• Stars
    star
    1,070
  • Rank 42,155 (Top 0.9 %)
  • Language
    TeX
  • License
    Apache License 2.0
  • Created about 3 years ago
  • Updated 7 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Resources for Data Centric AI

Data-Centric AI

We're collecting (an admittedly opinionated) list of resources and progress made in data-centric AI, with exciting directions past, present and future. This blog talks about our journey to data-centric AI and we articulate why we're excited about data as a viewpoint for AI in this blog.

While AI has been pretty focused on models, the real-world experience of those who put models into production is that the data often matters more. The goal of this repository is to consolidate this experience in a single place that can be accessed by anyone who wants to understand and contribute to this area.

We're only at the beginning, and you can help by contributing to this GitHub! Thanks to all those who have contributed so far.

How Can I Help?

If you're interested in this area and would like to hear more, join our mailing list! We'd also appreciate if you could fill out this short form to help us better understand what your interests might be.

Feedback (Interested in a class?)

We are creating a class at Stanford about data-centric AI, and we'd love your feedback. If you are interested in learning more, please fill out this form.

If you have ideas on how we can make this repository better, feel free to submit an issue with suggestions.

Contributing

We want this resource to grow with contributions from readers and data enthusiasts. If you'd like to make contributions to this Github repository, please read our contributing guidelines.

Table of Contents

  1. Background
  2. Data Programming & Weak Supervision
  3. Data Augmentation
  4. Self-Supervision
  5. The End of Modelitis
  6. Fine-Grained Evaluation
  7. Robustness
  8. Data Cleaning
  9. MLOps
  10. Data Selection
  11. Data Privacy (Under construction)
  12. Data Flow (Under construction)
  13. Multi-Task & Multi-Domain Learning (Under construction)
  14. Emerging Trends
  15. Applications
  16. Case Studies
  17. Awesome Lists

Background

Background

This area is a stub, you can help by improving it.

There's a lot of excitement around understanding how to put machine learning to work on real use-cases. Data-Centric AI embodies a particular point of view around how this progress can happen: by focusing on making it easier for practitioners to understand, program and iterate on datasets, instead of spending time on models.

Data Programming & Weak Supervision

Data Programming & Weak Supervision Area Page

Many modern machine learning systems require large, labeled datasets to be successful, but producing such datasets is time-consuming and expensive. Instead, weaker sources of supervision, such as crowdsourcing, distant supervision, and domain experts' heuristics like Hearst Patterns have been used since the 90s.

However, these were largely regarded by AI and AI/ML folks as ad hoc or isolated techniques. The effort to unify and combine these into a data centric viewpoint started in earnest with data programming AKA programmatic labeling, embodied in Snorkel, now an open-source project and thriving company. In Snorkel's data-centric AI approach, users specify multiple labeling functions that each represent a noisy estimate of the ground-truth label. Because these labeling functions vary in accuracy and coverage of the dataset, and may even be correlated, they are combined and denoised via a latent variable graphical model. The technical challenge is thus to learn accuracy and correlation parameters in this model, and to use them to infer the true label to be used for downstream tasks.

Data programming builds on a long line of work on parameter estimation in latent variable graphical models. Concretely, a generative model for the joint distribution of labeling functions and the unobserved (latent) true label is learned. This label model permits aggregation of diverse sources of signal, while allowing them to have varying accuracies and potential correlations.

This Snorkel blog post contains an overview of weak supervision, including how it compares to other approaches to get more labeled data and the technical modeling challenges. These Stanford CS229 lecture notes provide a theoretical summary of how graphical models are used in weak supervision.

Data Augmentation

Data Augmentation Area Page

A key challenge when training machine learning models is collecting a large, diverse dataset that sufficiently captures the variability observed in the real world. Due to the cost of collecting and labeling datasets, data augmentation has emerged as a cheap, promising alternative.

The central idea in data augmentation is to transform examples in an existing dataset to generate additional augmented examples that can then be added to the dataset. These additional examples typically increase the diversity of the data seen by the model, and provide additional supervision to the model. The foundations of data augmentation originate in tangent propagation, which introduced techniques to make a learned model invariant with respect to some transformation of the data.

Early successes in augmentation such as AlexNet focused on inducing invariances in an image classifier by generating examples that encouraged translational or rotational invariance. These successes made augmentation a de-facto part of pipelines for a wide-ranging set of tasks such as image, speech and text classification, machine translation, etc.

The choice of transformations used in augmentation is an important consideration, since it dictates the invariances learned by the model, and its behavior when encountering a diversity of test examples. While heuristic augmentations have remained popular, it is important to be able to control and program the augmentation pipeline more carefully. TANDA initiated a study of the problem of programming augmentation pipelines by composing a selection of data transformations. This area has since seen rapid growth with both deeper theoretical understanding and practical implementations such as AutoAugment. A nascent line of work has leveraged conditional generative models to learn--rather than specify--these transformations, further extending this programming paradigm.

Self-Supervision

Self-Supervision Area Page

The need for large, labeled datasets has motivated methods to pre-train latent representations of the input space using unlabeled data and use the resulting knowledge-rich representations in downstream tasks. As the representations allow for knowledge transfer to downstream tasks, these tasks require less labeled data. This paradigm, called "self-supervision", has revolutionized how we train (and pre-train) models. These models, which are recently termed "foundation models" by the Stanford initiative around understanding self-supervised ecosystems, has shifted focus away from hand-labeled data towards understanding what data to fed to these models.

As self-supervised data is often curated from large, public data sources (e.g., Wikipedia), it can contain popularity bias where the long tail of rare things are not well represented in the training data. As Orr et. al. show, some popular models (e.g., BERT) rely on context memorization and struggle to resolve this long tail as they are incapable of seeing a rare thing enough times to memorize the diverse set of patterns associated with it. The long tail problem even propagates to downstream tasks, like retrieval tasks from AmbER. One exciting future direction that lies at the intersection of AI and years of research from the data management community to address the long tail is through the integration of structured knowledge into the model. Structured knowledge is the core idea behind the tail success of Bootleg, a system for Named Entity Disambiguation.

The End of Modelitis

The End of Modelitis Area Page

Historically, the "kid in a candy shop" moment for ML researchers is building and tweaking models using tools like PyTorch or Jax. New models were coming out each day and these customize model architectures and finely-tuned parameters were beating state-of-the-art results. This modelitis craze, however, is coming to an end.

Recently, researchers have realized two things: (1) more gains are coming from deeply understanding the data rather than model tweaking (see all the exciting work in Data Augmentation), and (2) custom models are difficult to maintain and extend in a production environment. This resulted in model building platforms like Ludwig and Overton that enforced commoditized architectures, and moved towards ML systems that can be created declaratively Molino and Ré 2021. And they showed these commoditiy models were even better than their tuned predecessors! This result was further supported by Kaplan et al that showed the architecture matters less than the data.

This trend, which we are calling the End of Modelitis, is moving towards a data-centric view of model construction. The question is shifting from “how to construct the best model” to “how do you feed a model.”

Evaluation

Evaluation Area Page

Model evaluation is a crucial part of the model development process in machine learning. The goal of evaluation is to understand the quality of a model, and anticipate if it will perform well in the future.

While evaluation is a classical problem in machine learning, data-centric AI approaches have catalyzed a shift towards fine-grained evaluation: moving beyond standard measures of average performance such as accuracy and F1 scores, to measuring performance on particular populations of interest. This enables a more granular understanding of model performance, and gives users a clearer idea of model capabilities. This shift is complementary to a growing interest in understanding model robustness, since access to fine-grained evaluation permits an enhanced ability to build more robust models.

Approaches to fine-grained evaluation include measuring performance on critical data subsets called slices, invariance or sensitivity to data transformations, and resistance to adversarial perturbations. While most evaluation is user-specified, an important line of work found that models often underperform on hidden strata that are missed by model builders in evaluation, which can have profound consequences on our ability to deploy and use models. This motivates future work in automatically discovering these hidden strata, or more generally, finding all possible failure modes of a model by analyzing datasets and models systematically in conjunction.

Another important facet of fine-grained evaluation is data and model monitoring in order to anticipate, measure and mitigate degradations in performance due to distribution shift. This includes identifying and isolating data points that may be considered outliers, estimating performance on unlabeled data that is streaming to a deployed model, and generating rich summaries of how the data distribution may be shifting over time.

Robustness

Robustness Area Page

One standard assumption for successfully deploying machine learning models is that test time distributions are similar to those encountered and well-represented during training. In reality however, this assumption rarely holds: seldom do we expect to deploy models in settings that exactly match their training distributions. Training models robust to distribution shifts is then another core challenge to improve machine learning in the wild, which we argue can be addressed under a data-centric paradigm.

Here, we broadly categorize attempts to improve robustness to distribution shifts as those addressing (1) subpopulation shift or hidden stratification, (2) domain shift, and (3) shifts from adversarial perturbations.

Under subpopulation shift, training and test-time distributions differ in how well-represented each subpopulation or “data group” is. If certain subpopulations are underrepresented in the training data, then even if these distributions are encountered during training, standard empirical risk minimization (ERM) and “learning from statistical averages” can result in models that only perform well on the overrepresented subpopulations.

  • One initial real world problem under subpopulation shift came with training models on datasets that exhibit spurious correlations. If a majority of groups exhibit relations between certain features and the target of interest, but these dependencies do not hold for all data, then models may learn non-robust dependencies relying on these “spurious” correlations. If these groups are known, Group DRO can prevent this by focusing optimization on worst-group error.
  • Another instantiation comes from hidden stratification, where datapoints belonging to the same labeled classes can actually vary in their feature distributions quite a bit. With GEORGE, we learned that despite not being able to generalize to unseen data under all groups, deep neural networks trained with ERM can actually learn separable representations for different groups that share the same label.

Both Group DRO and GEORGE introduced approaches to handle subpopulation shift under real-world instantiations. These methods have inspired additional work related to upsampling estimated groups (LfF, JTT) and using contrastive learning to learn group-invariant representations (CNC - link coming soon).

Beyond subpopulation shift, robustness also features domain shift and adversarial perturbations. Under domain shift, we model test-time data as coming from a completely different domain from the training data. Under distribution shift with adversarial perturbations, test-time data may exhibit corruptions or imperceptible differences in input feature space that prevent trained ERM models from strongly generalizing to the test-time distributions. These important sections are are still stubs. Please add your contributions!

Data Cleaning

Data Cleaning Area Page

Another way to improve data quality for ML/AI applications is via data cleaning. There is a diverse range of exciting work along this line to jointly understand data cleaning and machine learning.

MLOps

MLOps Area Page

The central role of data makes the development and deployment of ML/AI applications an human-in-the-loop process. This is a complex process in which human engineers could make mistakes, require guidance, or need to be warned when something unexpected happens. The goal of MLOps is to provide principled ways for lifecycle management, monitoring, and validation.

Researchers have started tackling these challenges by developing new techniques and building systems such as TFX, Ease.ML or Overton designed to handle the entire lifecycle of a machine learning model both during development and in production. These systems typically consist of distinct components in charge of handling specific stages (e.g., pre- or post-training) or aspects (e.g., monitoring or debugging) of MLOps.

Data Selection

Data Selection Area Page

Massive amounts of data enabled many of the successes of deep learning, but this big data brings its own problems. Working with massive datasets is cumbersome and expensive in terms of both computational resources and labeling. Data selection methods, such as active learning and core-set selection, can mitigate the pains of big data by selecting the most valuable examples to label or train on.

While data selection has been a long-standing area in AI/ML, the scale and skew of modern, industrial datasets have pushed the field to more accurately value data and improve the scalability of selection methods. Recent works, such as (Sener & Savarese and Ghorbani et al.), take a more data-centric approach towards quantifying the contribution of each training example by focusing on diversity and representativeness rather than solely relying on model uncertainty. To help these methods scale, approaches, like SVP and SEALS, present straightforward ways to reduce computational costs by up to three orders of magnitude, enabling web-scale active learning and data selection more broadly.

These advances in label and computational efficiency make data selection applicable to modern datasets, allowing AI/ML to take a more data-centric view focused on quality rather than quantity.

Data Privacy (Under Construction)

Data Privacy Area Page

This description is a stub, you can help by improving it.

Data Flow (Under Construction)

Data Flow Area Page

This area is a stub, you can help by improving it.

Multi-Task & Multi-Domain Learning (Under Construction)

Multi-Task & Multi-Domain Learning Area Page

This area is a stub, you can help by improving it.

Emerging Trends

Emerging Trends Area Page

Data-centric AI is still growing, and we want to capture emerging trends as they arise. Some new areas we think are forming involve interactive machine learning, massice scale models, and observational ML. Take a look at the area page.

Applications

Applications Area Page

Data-centric approaches have had a wide-ranging impact wherever machine learning is used and deployed, whether in academia, industry or other organizations. Impact spans modalities such as structured data, text, images, videos, graphs and others, while areas include text and image processing, medical imaging, computational biology, autonomous driving, etc.

More Repositories

1

flash-attention

Fast and memory-efficient exact attention
Python
3,673
star
2

deepdive

DeepDive
Shell
1,949
star
3

state-spaces

Sequence Modeling with Structured State Spaces
Jupyter Notebook
1,372
star
4

ThunderKittens

Tile primitives for speedy kernels
Cuda
1,324
star
5

safari

Convolutions for Sequence Modeling
Assembly
841
star
6

meerkat

Creative interactive views of any dataset.
Python
814
star
7

hgcn

Hyperbolic Graph Convolutional Networks in PyTorch.
Python
556
star
8

ama_prompting

Ask Me Anything language model prompting
Python
530
star
9

hyena-dna

Official implementation for HyenaDNA, a long-range genomic foundation model built with Hyena
Assembly
528
star
10

m2

Repo for "Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture"
Assembly
507
star
11

H3

Language Modeling with the H3 State Space Model
Assembly
493
star
12

evaporate

This repo contains data and code for the paper "Language Models Enable Simple Systems for Generating Structured Views of Heterogeneous Data Lakes"
Python
467
star
13

manifest

Prompt programming with FMs.
Python
437
star
14

metal

Snorkel MeTaL: A framework for training models with multi-task weak supervision
Python
420
star
15

pdftotree

🌲 A tool for converting PDF into hOCR with text, tables, and figures being recognized and preserved.
Python
403
star
16

fonduer

A knowledge base construction engine for richly formatted data
Python
403
star
17

hyperbolics

Hyperbolic Embeddings
Python
364
star
18

flyingsquid

More interactive weak supervision with FlyingSquid
Python
310
star
19

legalbench

An open science effort to benchmark legal reasoning in foundation models
Python
282
star
20

KGEmb

Hyperbolic Knowledge Graph embeddings.
Python
242
star
21

flash-fft-conv

FlashFFTConv: Efficient Convolutions for Long Sequences with Tensor Cores
C++
242
star
22

aisys-building-blocks

Building blocks for foundation models.
242
star
23

bootleg

Self-Supervision for Named Entity Disambiguation at the Tail
Python
211
star
24

HypHC

Hyperbolic Hierarchical Clustering.
Python
186
star
25

TART

TART: A plug-and-play Transformer module for task-agnostic reasoning
Python
184
star
26

based

Code for exploring Based models from "Simple linear attention language models balance the recall-throughput tradeoff"
Python
178
star
27

fly

Python
174
star
28

tanda

Learning to Compose Domain-Specific Transformations for Data Augmentation
Python
169
star
29

spacetime

Code for SpaceTime 🌌⏱️. Proposed in Effectively Modeling Time Series with Simple Discrete State Spaces, ICLR 2023.
Python
156
star
30

butterfly

Butterfly matrix multiplication in PyTorch
Python
154
star
31

zoology

Understand and test language model architectures on synthetic tasks.
Python
149
star
32

babble

A system for generating training labels via natural language explanations
Python
144
star
33

hippo-code

Python
139
star
34

EmptyHeaded

Your worst case is our best case.
C++
136
star
35

domino

Python
133
star
36

blocking-tutorial

C++
127
star
37

mindbender

Tools for iterative knowledge base development with DeepDive
CoffeeScript
116
star
38

reef

Automatically labeling training data
Jupyter Notebook
103
star
39

fonduer-tutorials

A collection of simple tutorials for using Fonduer
Jupyter Notebook
100
star
40

fm_data_tasks

Foundation Models for Data Tasks
Python
92
star
41

TreeStructure

Table Extraction Tool
Jupyter Notebook
90
star
42

epoxy

Interactive Model Iteration with Weak Supervision and Pre-Trained Embeddings
Python
76
star
43

CaffeConTroll

C++
75
star
44

HoroPCA

Hyperbolic PCA via Horospherical Projections
Python
65
star
45

structured-nets

Structured matrices for compressing neural networks
Python
64
star
46

hidden-stratification

Combating hidden stratification with GEORGE
Jupyter Notebook
60
star
47

eclair-agents

Jupyter Notebook
50
star
48

numbskull

Numba-based version of DimmWitted Gibbs sampler
Python
45
star
49

model-patching

Model Patching: Closing the Subgroup Performance Gap with Data Augmentation
Python
42
star
50

cs145-notebooks-2016

Public materials for the Fall 2016 offering of CS145
Jupyter Notebook
35
star
51

skill-it

Skill-It! A Data-Driven Skills Framework for Understanding and Training Language Models
Jupyter Notebook
34
star
52

mandoline

(ICML 2021) Mandoline: Model Evaluation under Distribution Shift
Python
30
star
53

mongoose

A Learnable LSH Framework for Efficient NN Training
Python
28
star
54

thanos-code

Code release for the paper Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning
Python
28
star
55

tuffy

Tuffy, a Markov Logic Network solver
Java
23
star
56

snorkel-superglue

Applying Snorkel to SuperGLUE
Jupyter Notebook
23
star
57

ukb-cardiac-mri

Weakly Supervised MRI Series Classification for the UK Biobank
Python
22
star
58

correct-n-contrast

Official code repository for Correct-N-Contrast
Python
20
star
59

ludwig-benchmarking-toolkit

Ludwig benchmark
Python
19
star
60

ddlog

Compiler for writing DeepDive applications in a Datalog-like language — ⚠️🚧🛑 REPO MOVED TO DEEPDIVE 👇🏿
Scala
19
star
61

augmentation_code

Reproducible code for Augmentation paper
Python
18
star
62

smallfry

Python
18
star
63

tabi

Code release for Type-Aware Bi-Encoders for Open-Domain Entity Retrieval
Python
18
star
64

lp_rffs

Low precision random Fourier features for kernel approximation
Python
17
star
65

sampler

DimmWitted Gibbs Sampler in C++ — ⚠️🚧🛑 REPO MOVED TO DEEPDIVE 👉🏿
C++
17
star
66

random_embedding

Python
16
star
67

snorkel-biocorpus

Python
16
star
68

bazaar

JavaScript
14
star
69

ddbiolib

DeepDive Biomedical Tools
Python
13
star
70

anchor-stability

A study of the downstream instability of word embeddings
Jupyter Notebook
12
star
71

Omnivore

Omnivore Optimizer and Distributed CcT
C++
12
star
72

dd-genomics

The Genomics DeepDive project
Python
11
star
73

embroid

Embroid: Unsupervised Prediction Smoothing Can Improve Few-Shot Classification
Jupyter Notebook
11
star
74

dimmwitted

C++
10
star
75

medical-ned-integration

Cross-domain data integration for named entity disambiguation in biomedical text
Python
10
star
76

torchhalp

Python
9
star
77

cross-modal-ws-demo

HTML
9
star
78

liger

Liger: Fusing Weak Supervision and Model Embeddings
Python
8
star
79

treedlib

Jupyter Notebook
8
star
80

Accelerated-PCA

Accelerated Stochastic Power Iteration with Momentum
Jupyter Notebook
8
star
81

hyperE

HTML
7
star
82

chinstrap

C++
6
star
83

ivy-tutorial

An Introductory Tutorial for Ivy
Jupyter Notebook
6
star
84

quadrature-features

Code to generate kernel features using Gaussian quadrature
Python
5
star
85

icij-maude

Weakly supervised classification of adverse event reports from the FDA's MAUDE database.
Python
5
star
86

observational

Observational Supervision for Medical Image Classification using Gaze Data
Jupyter Notebook
5
star
87

librarian

DeepDive Librarian for managing all data sets we publish and receive
Python
3
star
88

halp

Python
3
star
89

bert-pretraining

Python
2
star
90

d3m-model-search

D3M Model Search Component
Python
2
star
91

elementary

Data services and APIs
Python
1
star
92

dependency_model

Structure learning code from [ICML'19 paper](https://arxiv.org/abs/1903.05844)
Python
1
star