• Stars
    star
    163
  • Rank 231,141 (Top 5 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 1 year ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Code for SpaceTime 🌌⏱️. Proposed in Effectively Modeling Time Series with Simple Discrete State Spaces, ICLR 2023.

SpaceTime 🌌⏱️

Code for SpaceTime, a neural net architecture for time series. Named after state-space models for time series forecasting and classification.

Cousin of S4, S4D, DSS, and H3. Descendent of LSSL. Expressive autoregressive modeling + fast flexible decoding (i.e., forecasting) ftw.

Proposed in Effectively Modeling Time Series with Simple Discrete State Spaces, ICLR 2023.

spacetime

Paper links:

Setup

Dependencies

A list of dependencies is provided in environment.yaml. We recommend creating a virtual environment with conda:

conda env create -f environment.yaml
conda activate spacetime

Data

Data for the Informer benchmark can be downloaded from https://github.com/zhouhaoyi/ETDataset. The data exists as CSV files, which should be saved in the directory ./dataloaders/data/informer/, e.g.,

./dataloaders/data/informer/etth/ETTh1.csv
./dataloaders/data/informer/etth/ETTh2.csv
./dataloaders/data/informer/ettm/ETTm1.csv
./dataloaders/data/informer/ettm/ETTm2.csv

Usage

Colab demo

We include an example Colab notebook walking through how to train and forecast a SpaceTime model on financial time series. For fun, we also provide a quick demo on how to power a trading bot with SpaceTime forecasts (probably with some bugs). Feel free to extend it and have fun. None of this is financial advice!

Training scripts

Sample scripts for training models on the Informer benchmark are provided below. For a complete set of arguments, please see ./setup/args.py. For an overview of key command-line arguments, please see the Experiment arguments section below.

# ETTh1 720  
python main.py --dataset etth1 --lag 336 --horizon 720 --embedding_config embedding/repeat --encoder_config encoder/default --decoder_config decoder/default --output_config output/default --n_blocks 1 --kernel_dim 64 --norm_order 1 --batch_size 50 --dropout 0.25 --lr 1e-3 --weight_decay 1e-4 --max_epochs 500 --early_stopping_epochs 20 --data_transform mean --loss informer_rmse --val_metric informer_rmse --criterion_weights 1 1 1 --seed 0 --no_wandb

# ETTh2 720   
python main.py --dataset etth2 --lag 336 --horizon 720 --embedding_config embedding/repeat --encoder_config encoder/default --decoder_config decoder/default --output_config output/default --n_blocks 1 --kernel_dim 64 --norm_order 1 --batch_size 50 --dropout 0.25 --lr 1e-3 --weight_decay 1e-4 --max_epochs 500 --early_stopping_epochs 20 --data_transform mean --loss informer_rmse --val_metric informer_rmse --criterion_weights 1 1 1 --seed 0 --no_wandb

# ETTm1 720  
python main.py --dataset ettm1 --lag 336 --horizon 720 --embedding_config embedding/repeat --encoder_config encoder/default --decoder_config decoder/default --output_config output/default --n_blocks 1 --kernel_dim 64 --norm_order 1 --batch_size 50 --dropout 0.25 --lr 1e-3 --weight_decay 1e-4 --max_epochs 500 --early_stopping_epochs 20 --data_transform mean --loss informer_rmse --val_metric informer_rmse --criterion_weights 1 1 1 --seed 0 --no_wandb

# ETTm2 720  
python main.py --dataset ettm2 --lag 336 --horizon 720 --embedding_config embedding/repeat --encoder_config encoder/default --decoder_config decoder/default --output_config output/default --n_blocks 1 --kernel_dim 64 --norm_order 1 --batch_size 50 --dropout 0.25 --lr 1e-3 --weight_decay 1e-4 --max_epochs 500 --early_stopping_epochs 20 --data_transform mean --loss informer_rmse --val_metric informer_rmse --criterion_weights 1 1 1 --seed 0 --no_wandb

More details

SpaceTime architecture and configs

spacetime_architecture

To build a SpaceTime model, we specify a series of config files responsible for individual model components (determined via the config arguments, e.g., --embedding_config embedding/<config_name>). Default config files are located in ./configs/model. Please find more information on the directory structure via the config paths and descriptions below.

Config Path (./configs/model/) Description
embedding/ Configs for the input layer, which maps from the input sample dimension (1 for univariate data) to the model dimension (hidden-layer width).
encoder/ Configs for the encoder blocks ("SpaceTime layers" in the paper). - Each config specifies the configs behind the preprocessing, open-loop, and closed-loop SSMs, the MLPs, and the skip connections in each block.
decoder/ Configs for the decoder block. Same organization as encoder/
ssm/ Configs for open-loop (convolutional view) SSMs used in the encoder blocks. - Also contains subdirectories for preprocessing and closed-loop SSMs.
ssm/preprocess/ Configs for the preprocessing SSMs (e.g., differencing, moving average residual) used in the encoder blocks.
ssm/closed_loop/ Configs for the closed-loop (recurrent view) SSMs used in the decoder block.
mlp/ Configs for MLPs (FFNs) used in each block.
output/ Configs for the output layer, which maps from the model dimension to the target dimension.

Command-line arguments

Argument Description
--dataset The dataset name
--lag Input sequence length, i.e., number of historical time-steps or lag terms taken as input to the model
--horizon Output sequence length, i.e., number of future time-steps or horizon terms to predict
--embedding_config Config file for model embedding layer
--encoder_config Config file for model encoder blocks ("SpaceTime Layers" in the paper)
--decoder_config Config file for model decoder blocks ("SpaceTime Layers" in the paper)
--output_config Config file for model output layer
--n_blocks Number of blocks (SpaceTime layers) in the model encoder. Overrides default specified in --encoder_config file
--kernel_dim Dimension of SSM kernel used in each block. Overrides default specified in SSM config file (see section on SpaceTime Architecture for more details)
--norm_order Normalization order applied to A, B and C / K matrices when computing SSM outputs
--early_stopping_epochs Number of epochs to wait before early stopping. Training stops after validation metric (specified in --val_metric) does not improve after this many epochs.
--data_transform Transformation applied to lag terms before being used as model inputs. We reverse this transformation for the predictions. Defaults to subtracting the mean over inputs.
--criterion_weights List of 3 values that specify relative weight of loss components. Given --criterion_weights w0 w1 w2, w0 weights loss over horizon term model outputs, w1 weights loss over lag term model outputs, w2 weights loss over lag term closed-loop outputs (last-layer next-time-step inputs). Please see ./train/step/informer.py for additional details.
--no_wandb If included, does not use Weights & Biases (wandb) to log experiment metrics (default logs to wandb)
--no_cuda If included, does not use GPU for training and inference (default uses one GPU if available)

Citation

If you use our code or found our work valuable, please cite:

@article{,
  title={Effectively Modeling Time Series with Simple Discrete State Spaces},
  author={Zhang, Michael, and Saab, Khaled and Poli, Michael and Dao, Tri and Goel, Karan and R{\'e}, Christopher},
  journal={International Conference on Learning Representations},
  year={2023},
}

More Repositories

1

flash-attention

Fast and memory-efficient exact attention
Python
3,673
star
2

deepdive

DeepDive
Shell
1,957
star
3

ThunderKittens

Tile primitives for speedy kernels
Cuda
1,555
star
4

state-spaces

Sequence Modeling with Structured State Spaces
Jupyter Notebook
1,372
star
5

data-centric-ai

Resources for Data Centric AI
TeX
1,099
star
6

safari

Convolutions for Sequence Modeling
Assembly
867
star
7

meerkat

Creative interactive views of any dataset.
Python
826
star
8

hgcn

Hyperbolic Graph Convolutional Networks in PyTorch.
Python
597
star
9

hyena-dna

Official implementation for HyenaDNA, a long-range genomic foundation model built with Hyena
Assembly
585
star
10

ama_prompting

Ask Me Anything language model prompting
Python
538
star
11

m2

Repo for "Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture"
Assembly
535
star
12

H3

Language Modeling with the H3 State Space Model
Assembly
513
star
13

evaporate

This repo contains data and code for the paper "Language Models Enable Simple Systems for Generating Structured Views of Heterogeneous Data Lakes"
Python
479
star
14

manifest

Prompt programming with FMs.
Python
440
star
15

pdftotree

🌲 A tool for converting PDF into hOCR with text, tables, and figures being recognized and preserved.
Python
431
star
16

metal

Snorkel MeTaL: A framework for training models with multi-task weak supervision
Python
423
star
17

fonduer

A knowledge base construction engine for richly formatted data
Python
408
star
18

aisys-building-blocks

Building blocks for foundation models.
377
star
19

hyperbolics

Hyperbolic Embeddings
Python
372
star
20

legalbench

An open science effort to benchmark legal reasoning in foundation models
Python
341
star
21

flyingsquid

More interactive weak supervision with FlyingSquid
Python
313
star
22

flash-fft-conv

FlashFFTConv: Efficient Convolutions for Long Sequences with Tensor Cores
C++
276
star
23

KGEmb

Hyperbolic Knowledge Graph embeddings.
Python
249
star
24

bootleg

Self-Supervision for Named Entity Disambiguation at the Tail
Python
213
star
25

based

Code for exploring Based models from "Simple linear attention language models balance the recall-throughput tradeoff"
Python
209
star
26

HypHC

Hyperbolic Hierarchical Clustering.
Python
192
star
27

fly

Python
191
star
28

TART

TART: A plug-and-play Transformer module for task-agnostic reasoning
Python
190
star
29

tanda

Learning to Compose Domain-Specific Transformations for Data Augmentation
Python
171
star
30

hippo-code

Python
166
star
31

butterfly

Butterfly matrix multiplication in PyTorch
Python
164
star
32

zoology

Understand and test language model architectures on synthetic tasks.
Python
160
star
33

lolcats

Repo for "LoLCATs: On Low-Rank Linearizing of Large Language Models"
Python
154
star
34

babble

A system for generating training labels via natural language explanations
Python
146
star
35

EmptyHeaded

Your worst case is our best case.
C++
138
star
36

domino

Python
134
star
37

blocking-tutorial

C++
132
star
38

mindbender

Tools for iterative knowledge base development with DeepDive
CoffeeScript
117
star
39

reef

Automatically labeling training data
Jupyter Notebook
106
star
40

fm_data_tasks

Foundation Models for Data Tasks
Python
100
star
41

fonduer-tutorials

A collection of simple tutorials for using Fonduer
Jupyter Notebook
100
star
42

eclair-agents

Automating enterprise workflows with multimodal agents
Jupyter Notebook
92
star
43

TreeStructure

Table Extraction Tool
Jupyter Notebook
90
star
44

CaffeConTroll

C++
76
star
45

epoxy

Interactive Model Iteration with Weak Supervision and Pre-Trained Embeddings
Python
76
star
46

HoroPCA

Hyperbolic PCA via Horospherical Projections
Python
68
star
47

structured-nets

Structured matrices for compressing neural networks
Python
66
star
48

hidden-stratification

Combating hidden stratification with GEORGE
Jupyter Notebook
62
star
49

numbskull

Numba-based version of DimmWitted Gibbs sampler
Python
46
star
50

prefix-linear-attention

Python
44
star
51

model-patching

Model Patching: Closing the Subgroup Performance Gap with Data Augmentation
Python
42
star
52

skill-it

Skill-It! A Data-Driven Skills Framework for Understanding and Training Language Models
Jupyter Notebook
41
star
53

cs145-notebooks-2016

Public materials for the Fall 2016 offering of CS145
Jupyter Notebook
35
star
54

mandoline

(ICML 2021) Mandoline: Model Evaluation under Distribution Shift
Python
31
star
55

mongoose

A Learnable LSH Framework for Efficient NN Training
Python
30
star
56

thanos-code

Code release for the paper Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning
Python
28
star
57

ukb-cardiac-mri

Weakly Supervised MRI Series Classification for the UK Biobank
Python
25
star
58

tuffy

Tuffy, a Markov Logic Network solver
Java
24
star
59

snorkel-superglue

Applying Snorkel to SuperGLUE
Jupyter Notebook
23
star
60

correct-n-contrast

Official code repository for Correct-N-Contrast
Python
21
star
61

ludwig-benchmarking-toolkit

Ludwig benchmark
Python
19
star
62

smallfry

Python
19
star
63

tabi

Code release for Type-Aware Bi-Encoders for Open-Domain Entity Retrieval
Python
19
star
64

lp_rffs

Low precision random Fourier features for kernel approximation
Python
19
star
65

ddlog

Compiler for writing DeepDive applications in a Datalog-like language — ⚠️🚧🛑 REPO MOVED TO DEEPDIVE 👇🏿
Scala
19
star
66

wonderbread

WONDERBREAD benchmark + dataset for BPM tasks
Jupyter Notebook
19
star
67

augmentation_code

Reproducible code for Augmentation paper
Python
18
star
68

sampler

DimmWitted Gibbs Sampler in C++ — ⚠️🚧🛑 REPO MOVED TO DEEPDIVE 👉🏿
C++
17
star
69

random_embedding

Python
16
star
70

snorkel-biocorpus

Python
16
star
71

ddbiolib

DeepDive Biomedical Tools
Python
15
star
72

bazaar

JavaScript
14
star
73

Omnivore

Omnivore Optimizer and Distributed CcT
C++
13
star
74

anchor-stability

A study of the downstream instability of word embeddings
Jupyter Notebook
12
star
75

medical-ned-integration

Cross-domain data integration for named entity disambiguation in biomedical text
Python
11
star
76

dd-genomics

The Genomics DeepDive project
Python
11
star
77

embroid

Embroid: Unsupervised Prediction Smoothing Can Improve Few-Shot Classification
Jupyter Notebook
11
star
78

torchhalp

Python
10
star
79

dimmwitted

C++
10
star
80

Accelerated-PCA

Accelerated Stochastic Power Iteration with Momentum
Jupyter Notebook
9
star
81

liger

Liger: Fusing Weak Supervision and Model Embeddings
Python
9
star
82

cross-modal-ws-demo

HTML
9
star
83

hyperE

HTML
8
star
84

treedlib

Jupyter Notebook
8
star
85

ivy-tutorial

An Introductory Tutorial for Ivy
Jupyter Notebook
7
star
86

observational

Observational Supervision for Medical Image Classification using Gaze Data
Jupyter Notebook
7
star
87

chinstrap

C++
6
star
88

quadrature-features

Code to generate kernel features using Gaussian quadrature
Python
6
star
89

icij-maude

Weakly supervised classification of adverse event reports from the FDA's MAUDE database.
Python
6
star
90

librarian

DeepDive Librarian for managing all data sets we publish and receive
Python
3
star
91

halp

Python
3
star
92

bert-pretraining

Python
2
star
93

d3m-model-search

D3M Model Search Component
Python
2
star
94

elementary

Data services and APIs
Python
1
star
95

dependency_model

Structure learning code from [ICML'19 paper](https://arxiv.org/abs/1903.05844)
Python
1
star