• Stars
    star
    530
  • Rank 81,700 (Top 2 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 1 year ago
  • Updated 12 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Ask Me Anything language model prompting

Ask Me Anything: A simple strategy for prompting language models

GitHub Together AI

This repository contains code for the Ask Me Anything (AMA) prompt-aggregation strategy. The end-to-end AMA approach includes (1) recursively using the language model to transform the task format and prompt and (2) aggregating the predictions of multiple prompts using weak supervision. We include code for both components and pointers to the publicly downloadable datasets. See our paper for more details.

Table of Contents

Setup

Installation

Here we will setup the AMA code (prompting models for tasks), weak supervision code (aggregating predictions), and Manifest code (tooling for easily loading and running the models).

We encourage the use of conda environments:

conda create --name ama python=3.8
conda activate ama

Clone as follows:

# Ask Me Anything code
git clone [email protected]:HazyResearch/ama_prompting.git
cd ama_prompting
pip install -r requirements.txt

# Weak supervision code
cd metal-ama
git submodule init
git submodule update
pip install -e .

# Manifest 
git clone [email protected]:HazyResearch/manifest.git
cd manifest
pip install -e .

Getting the data

We assume all data lives in the AMA_DATA environment variable. By default, this is set to /home/data. To change this, run

export AMA_DATA=<path>

Please follow the instructions below to download all necessary data for experiments.

  1. Download the PromptSource (P3) dataset from Hugging Face at https://huggingface.co/datasets/bigscience/P3.
cd $AMA_DATA
git lfs install
git clone https://huggingface.co/datasets/bigscience/P3

Then run ama_prompting/download_p3.py. We use the GPT3-Style prompts in the few-shot baseline for each benchmark.

  1. We downloaded the remaining tasks from the following sources:

Running models

We run inference on models using a tool called Manifest. This tool is useful because it caches your inference results and does not require reloading the model for each new run you launch. To load the EleutherAI GPT-j-6B model, in a Tmux session, run:

python3 manifest/manifest/api/app.py \
    --model_type huggingface \
    --model_name_or_path EleutherAI/gpt-j-6B \
    --device 0

It will take a few minutes for large models to load! To use a different model, replace EleutherAI/gpt-j-6B with the model name. See the Manifest repo for more information on loading other models.

Experiments

Collecting the prompting predictions

To run a single task such as the Recognizing Textual Entailment (RTE) SuperGLUE benchmark, you can use the following steps.

  1. Load a Manifest model using the above command

  2. Run the following command. This will run the zero-shot baseline (run_zeroshot = 1), few-shot baseline (run_fewshot = 1) with $k$ in-context demonstrations (k_shot = 3), and the AMA baseline (run_decomp = 1). In AMA, we aggregate the predictions of multiple prompts-per-input. The number of prompts over which to aggregate is specified by num_boost.

python3 tasks/RTE_final.py \
    --run_zeroshot 1 \
    --run_fewshot 1 \
    --run_decomp 1 \
    --num_boost 5 \
    --k_shot 3 \
    --output_metrics_file ../ama_logs/metrics.json \
    --cache_connection ../ama_logs/manifest_cache.sqlite \
    --save_dir ../ama_logs/ama_final_runs

Please see the argparse in tasks/decomposition.py for other run options; for instance, to control Manifest's caching behavior.

  1. The results of all baselines will be saved in ama_final_runs/<task_name> (e.g., <task_name> is super_glue_rte as seen in the RTE_final.py main function) and output all performance metrics to metrics.json. The output appears as follows:
Saving to ../ama_logs/ama_final_runs/super_glue_rte/EleutherAI_gpt-j-6B_decomposed_10052022.json
Saving to ../ama_logs/ama_final_runs/super_glue_rte/EleutherAI_gpt-j-6B_decomposed_10052022_train.json
Accuracy Few Shot 0.5884476534296029
Accuracy by Boost Set Decomposed [0.592057761732852, 0.6209386281588448, 0.5848375451263538, 0.6678700361010831, 0.6173285198555957]
Accuracy by Boost Set Decomposed Average 0.6166064981949458
Accuracy Boost Decomposed 0.6642599277978339
Saved metrics to ../ama_logs/metrics.json
Saved final data to ../ama_logs/ama_final_runs/super_glue_rte

For the AMA baseline, which consists of num_boost prompt-chains, the metrics include the individual prompt-chain accuracies over the dataset ("Accuracy by Boost Set Decomposed"), average score ("Accuracy by Boost Set Decomposed Average"), and majority vote result ("Accuracy Boost Decomposed").

Running weak supervision

  1. Next we aggregate over the predictions with weak supervision (WS). In order to run the WS algorithm on the predictions which were saved down in ama_final_runs/super_glue_rte, use the following command. By default, we assume the date of the log file is today. You can change it with the --override_date command.
python3 boosting/run_ws.py \
--task_name super_glue_rte \
--data_dir ../ama_logs/ama_final_runs \
--model_prefix EleutherAI_gpt-j-6B \
--override_date 10052022

The output will include the following results:

# The code will first output results without modelling dependencies.  

Trained Label Model Metrics (No deps):
Accuracy: 0.650
Precision: 0.724
Recall: 0.420
F1: 0.531

# For this task, the WS algorithm identifies a dependency between prompts 0 and 2. Next the code outputs results after modelling dependencies, if dependencies are recovered above.

Trained Label Model Metrics (with deps):
Accuracy: 0.751
Precision: 0.758
Recall: 0.695
F1: 0.725


# Conditional entropy metric discussed in the paper 

H(Y | WS output): 0.5602824867598865

For this task, Brown et al., 2020 reports accuracy metrics.

Overall repository structure

tasks/           code for running inference on tasks
diagnostics/     contains the diagnostic tasks
boosting/        code for running weak supervision
metal-ama/       weak supervision algorithm
manifest/        code for loading and using models
/home/data/      default location for benchmarks

Citation

If you use this codebase, or otherwise found our work valuable, please cite:

@article{arora2022ama,
  title={Ask Me Anything: A simple strategy for prompting language models},
  author={Arora, Simran and Narayan, Avanika and Chen, Mayee F. and Orr, Laurel and Guha, Neel and Bhatia, Kush and Chami, Ines and Sala, Frederic and R\'e, Christopher},
  journal={arXiv:2210.02441},
  year={2022}
}

As well as Snorkel MeTaL, bigscience P3, and the benchmark authors.

Acknowledgements

We are very grateful to the following organizations for the resources that made this work possible: Together Computer, Numbers Station, Snorkel, Stanford Center for Research on Foundation Models and Stanford HAI.

More Repositories

1

flash-attention

Fast and memory-efficient exact attention
Python
3,673
star
2

deepdive

DeepDive
Shell
1,949
star
3

state-spaces

Sequence Modeling with Structured State Spaces
Jupyter Notebook
1,372
star
4

ThunderKittens

Tile primitives for speedy kernels
Cuda
1,324
star
5

data-centric-ai

Resources for Data Centric AI
TeX
1,070
star
6

safari

Convolutions for Sequence Modeling
Assembly
841
star
7

meerkat

Creative interactive views of any dataset.
Python
814
star
8

hgcn

Hyperbolic Graph Convolutional Networks in PyTorch.
Python
556
star
9

hyena-dna

Official implementation for HyenaDNA, a long-range genomic foundation model built with Hyena
Assembly
528
star
10

m2

Repo for "Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture"
Assembly
507
star
11

H3

Language Modeling with the H3 State Space Model
Assembly
493
star
12

evaporate

This repo contains data and code for the paper "Language Models Enable Simple Systems for Generating Structured Views of Heterogeneous Data Lakes"
Python
467
star
13

manifest

Prompt programming with FMs.
Python
437
star
14

metal

Snorkel MeTaL: A framework for training models with multi-task weak supervision
Python
420
star
15

pdftotree

🌲 A tool for converting PDF into hOCR with text, tables, and figures being recognized and preserved.
Python
403
star
16

fonduer

A knowledge base construction engine for richly formatted data
Python
403
star
17

hyperbolics

Hyperbolic Embeddings
Python
364
star
18

flyingsquid

More interactive weak supervision with FlyingSquid
Python
310
star
19

legalbench

An open science effort to benchmark legal reasoning in foundation models
Python
282
star
20

KGEmb

Hyperbolic Knowledge Graph embeddings.
Python
242
star
21

flash-fft-conv

FlashFFTConv: Efficient Convolutions for Long Sequences with Tensor Cores
C++
242
star
22

aisys-building-blocks

Building blocks for foundation models.
242
star
23

bootleg

Self-Supervision for Named Entity Disambiguation at the Tail
Python
211
star
24

HypHC

Hyperbolic Hierarchical Clustering.
Python
186
star
25

TART

TART: A plug-and-play Transformer module for task-agnostic reasoning
Python
184
star
26

based

Code for exploring Based models from "Simple linear attention language models balance the recall-throughput tradeoff"
Python
178
star
27

fly

Python
174
star
28

tanda

Learning to Compose Domain-Specific Transformations for Data Augmentation
Python
169
star
29

spacetime

Code for SpaceTime 🌌⏱️. Proposed in Effectively Modeling Time Series with Simple Discrete State Spaces, ICLR 2023.
Python
156
star
30

butterfly

Butterfly matrix multiplication in PyTorch
Python
154
star
31

zoology

Understand and test language model architectures on synthetic tasks.
Python
149
star
32

babble

A system for generating training labels via natural language explanations
Python
144
star
33

hippo-code

Python
139
star
34

EmptyHeaded

Your worst case is our best case.
C++
136
star
35

domino

Python
133
star
36

blocking-tutorial

C++
127
star
37

mindbender

Tools for iterative knowledge base development with DeepDive
CoffeeScript
116
star
38

reef

Automatically labeling training data
Jupyter Notebook
103
star
39

fonduer-tutorials

A collection of simple tutorials for using Fonduer
Jupyter Notebook
100
star
40

fm_data_tasks

Foundation Models for Data Tasks
Python
92
star
41

TreeStructure

Table Extraction Tool
Jupyter Notebook
90
star
42

epoxy

Interactive Model Iteration with Weak Supervision and Pre-Trained Embeddings
Python
76
star
43

CaffeConTroll

C++
75
star
44

HoroPCA

Hyperbolic PCA via Horospherical Projections
Python
65
star
45

structured-nets

Structured matrices for compressing neural networks
Python
64
star
46

hidden-stratification

Combating hidden stratification with GEORGE
Jupyter Notebook
60
star
47

eclair-agents

Jupyter Notebook
50
star
48

numbskull

Numba-based version of DimmWitted Gibbs sampler
Python
45
star
49

model-patching

Model Patching: Closing the Subgroup Performance Gap with Data Augmentation
Python
42
star
50

cs145-notebooks-2016

Public materials for the Fall 2016 offering of CS145
Jupyter Notebook
35
star
51

skill-it

Skill-It! A Data-Driven Skills Framework for Understanding and Training Language Models
Jupyter Notebook
34
star
52

mandoline

(ICML 2021) Mandoline: Model Evaluation under Distribution Shift
Python
30
star
53

mongoose

A Learnable LSH Framework for Efficient NN Training
Python
28
star
54

thanos-code

Code release for the paper Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning
Python
28
star
55

tuffy

Tuffy, a Markov Logic Network solver
Java
23
star
56

snorkel-superglue

Applying Snorkel to SuperGLUE
Jupyter Notebook
23
star
57

ukb-cardiac-mri

Weakly Supervised MRI Series Classification for the UK Biobank
Python
22
star
58

correct-n-contrast

Official code repository for Correct-N-Contrast
Python
20
star
59

ludwig-benchmarking-toolkit

Ludwig benchmark
Python
19
star
60

ddlog

Compiler for writing DeepDive applications in a Datalog-like language — ⚠️🚧🛑 REPO MOVED TO DEEPDIVE 👇🏿
Scala
19
star
61

augmentation_code

Reproducible code for Augmentation paper
Python
18
star
62

smallfry

Python
18
star
63

tabi

Code release for Type-Aware Bi-Encoders for Open-Domain Entity Retrieval
Python
18
star
64

lp_rffs

Low precision random Fourier features for kernel approximation
Python
17
star
65

sampler

DimmWitted Gibbs Sampler in C++ — ⚠️🚧🛑 REPO MOVED TO DEEPDIVE 👉🏿
C++
17
star
66

random_embedding

Python
16
star
67

snorkel-biocorpus

Python
16
star
68

bazaar

JavaScript
14
star
69

ddbiolib

DeepDive Biomedical Tools
Python
13
star
70

anchor-stability

A study of the downstream instability of word embeddings
Jupyter Notebook
12
star
71

Omnivore

Omnivore Optimizer and Distributed CcT
C++
12
star
72

dd-genomics

The Genomics DeepDive project
Python
11
star
73

embroid

Embroid: Unsupervised Prediction Smoothing Can Improve Few-Shot Classification
Jupyter Notebook
11
star
74

dimmwitted

C++
10
star
75

medical-ned-integration

Cross-domain data integration for named entity disambiguation in biomedical text
Python
10
star
76

torchhalp

Python
9
star
77

cross-modal-ws-demo

HTML
9
star
78

liger

Liger: Fusing Weak Supervision and Model Embeddings
Python
8
star
79

treedlib

Jupyter Notebook
8
star
80

Accelerated-PCA

Accelerated Stochastic Power Iteration with Momentum
Jupyter Notebook
8
star
81

hyperE

HTML
7
star
82

chinstrap

C++
6
star
83

ivy-tutorial

An Introductory Tutorial for Ivy
Jupyter Notebook
6
star
84

quadrature-features

Code to generate kernel features using Gaussian quadrature
Python
5
star
85

icij-maude

Weakly supervised classification of adverse event reports from the FDA's MAUDE database.
Python
5
star
86

observational

Observational Supervision for Medical Image Classification using Gaze Data
Jupyter Notebook
5
star
87

librarian

DeepDive Librarian for managing all data sets we publish and receive
Python
3
star
88

halp

Python
3
star
89

bert-pretraining

Python
2
star
90

d3m-model-search

D3M Model Search Component
Python
2
star
91

elementary

Data services and APIs
Python
1
star
92

dependency_model

Structure learning code from [ICML'19 paper](https://arxiv.org/abs/1903.05844)
Python
1
star