• Stars
    star
    171
  • Rank 222,266 (Top 5 %)
  • Language
    Python
  • License
    MIT License
  • Created over 7 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Learning to Compose Domain-Specific Transformations for Data Augmentation

Learning to Compose Domain-Specific Transformations for Data Augmentation

Or: Transformation Adversarial Networks for Data Augmentations (TANDA)

Paper (NeurIPS 2017): Learning to Compose Domain-Specific Transformations for Data Augmentation
Corresponding authors: Alex Ratner ([email protected]), Henry Ehrenberg ([email protected])
TANDA blog post

*For more on using Transformation Functions (TFs) for data augmentation, see the Snorkel project

NEW: an easy-to-use Keras interface

Just in time for NeurIPS 2017, we're releasing an easy-to-use substitute for Keras' ImageDataGenerator data augmentation class. Just swap in TANDAImageDataGenerator and you'll be using our trained data augmentation models! For a recipe on how to use it, check out keras/keras_cifar10_example.py. All we did was copy Keras' CIFAR-10 CNN example script and plug in the TANDAImageDataGenerator. Easy as that.

Overview

Using data augmentation on benchmark machine learning tasks, like MNIST and CIFAR-10, yields large performance gains. But using data augmentation on new tasks can prove difficult. We've found that while it's usually easy for practitioners to

  • obtain large quantities of labeled data; and
  • come up with individual label-preserving data transformations (e.g. small image rotations),

constructing and tuning the more sophisticated compositions typically needed to achieve state-of-the-art results is a time-consuming manual task. The TANDA library unlabeled data points and arbitrary, user-provided transformation functions as input, and learns how to compose them to generate realistic, augmented data points.

Visual examples

Synthetic data

The original data points (blue) are distributed at random within the purple dotted line. We define several random displacement vectors as transformations, and the orange points are augmented copies of blue data points. At first, the transformations are applied effectively at random, yielding many augmented points outside of the true data distribution. After a few iterations, the augmentation model learns how to create sequences of displacements that yield augmented data points within the distribution of interest.

TANDA

MNIST

We learned an augmentation model for the MNIST data set using rotation, shear, elastic deformation, and rescaling transformation functions. The figure shows 100 augmented MNIST images. While they initially do not look like realistic digits, the model learns to compose the image transformations to generate realistic augmented images.

TANDA-MNIST

Installation

First, clone this repo. TANDA is compatable with both Python 2.7 and Python 3.5+ and requires a few packages (see note below) which can be installed using pip (or conda).

pip install --requirement python-package-requirement.txt

If you're using the Keras interface, you'll need to install Keras as well.

Note: currently, TANDA only works with TensorFlow 1.2. This is enforced in python-package-requirement.txt. We do not recommend using newer versions right now, as models will not train correctly.

Example usage

TANDA includes example TAN training scripts for MNIST and CIFAR-10. You'll need to add the TANDA library to your path first. From the top-level tanda directory, just run

source set_env.sh

The example scripts can be found in example-scripts. To train an MNIST TAN:

example-scripts/mnist-example.sh

Before running experiments with CIFAR-10, you'll need to download the data:

cd experiments/cifar10
./download-data.sh
cd $TANDAHOME

Then to train a CIFAR-10 TAN, run:

example-scripts/cifar-example.sh

Running experiments with custom parameters

Single experiment

To run a single experiment, for example on CIFAR-10:

source set_env.sh
python experiments/cifar10/train.py --run_name test_run [FLAGS]

The vast majority of flags can be found in experiments/train_scripts.py, but individual train scripts (e.g. experiments/cifar10/train.py) may also have custom flags.

The run_type flag determines the mode to run in:

  • tanda-full [default]: Train a TAN, then use this to train a data-augmented end model
  • tan-only: Train TAN only
  • tanda-pretrained: Load trained TAN, then use this to train a data-augmented end model
  • random: Train a randomly-augmented end model
  • baseline: Train an end model with no data augmentation

TensorBoard visualizations are available during (and after) training:

tensorboard --logdir experiments/log/[DATESTAMP]/[RUN_NAME]_[TIMESTAMP]

Multiple experiments

To launch a set of experiments in parallel, first define a config file (see experiments/cifar10/config/ for examples), then run e.g.:

source set_env.sh
python experiments/launch_run.py --script experiments/cifar10/train.py --config experiments/cifar10/config/tan_search_config.json

To see quick stats from the TAN training, run:

python experiments/print_tan_stats.py --log_root [LOG_ROOT]

One procedure is to train a set of TAN models (setting tan_only=True), then choose the best ones (by e.g. visual appearance or generative-to-random loss ratio), then run these with end models. This can be done in parallel:

python experiments/launch_end_models.py --script experiments/cifar10/train.py --end_model_config experiments/cifar10/config/end_model_config.json --tan_log_root [LOG_ROOT] --model_indexes 1 5 7

More Repositories

1

flash-attention

Fast and memory-efficient exact attention
Python
3,673
star
2

deepdive

DeepDive
Shell
1,957
star
3

ThunderKittens

Tile primitives for speedy kernels
Cuda
1,555
star
4

state-spaces

Sequence Modeling with Structured State Spaces
Jupyter Notebook
1,372
star
5

data-centric-ai

Resources for Data Centric AI
TeX
1,099
star
6

safari

Convolutions for Sequence Modeling
Assembly
867
star
7

meerkat

Creative interactive views of any dataset.
Python
826
star
8

hgcn

Hyperbolic Graph Convolutional Networks in PyTorch.
Python
597
star
9

hyena-dna

Official implementation for HyenaDNA, a long-range genomic foundation model built with Hyena
Assembly
585
star
10

ama_prompting

Ask Me Anything language model prompting
Python
538
star
11

m2

Repo for "Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture"
Assembly
535
star
12

H3

Language Modeling with the H3 State Space Model
Assembly
513
star
13

evaporate

This repo contains data and code for the paper "Language Models Enable Simple Systems for Generating Structured Views of Heterogeneous Data Lakes"
Python
479
star
14

manifest

Prompt programming with FMs.
Python
440
star
15

pdftotree

🌲 A tool for converting PDF into hOCR with text, tables, and figures being recognized and preserved.
Python
431
star
16

metal

Snorkel MeTaL: A framework for training models with multi-task weak supervision
Python
423
star
17

fonduer

A knowledge base construction engine for richly formatted data
Python
408
star
18

aisys-building-blocks

Building blocks for foundation models.
377
star
19

hyperbolics

Hyperbolic Embeddings
Python
372
star
20

legalbench

An open science effort to benchmark legal reasoning in foundation models
Python
341
star
21

flyingsquid

More interactive weak supervision with FlyingSquid
Python
313
star
22

flash-fft-conv

FlashFFTConv: Efficient Convolutions for Long Sequences with Tensor Cores
C++
276
star
23

KGEmb

Hyperbolic Knowledge Graph embeddings.
Python
249
star
24

bootleg

Self-Supervision for Named Entity Disambiguation at the Tail
Python
213
star
25

based

Code for exploring Based models from "Simple linear attention language models balance the recall-throughput tradeoff"
Python
209
star
26

HypHC

Hyperbolic Hierarchical Clustering.
Python
192
star
27

fly

Python
191
star
28

TART

TART: A plug-and-play Transformer module for task-agnostic reasoning
Python
190
star
29

hippo-code

Python
166
star
30

butterfly

Butterfly matrix multiplication in PyTorch
Python
164
star
31

spacetime

Code for SpaceTime 🌌⏱️. Proposed in Effectively Modeling Time Series with Simple Discrete State Spaces, ICLR 2023.
Python
163
star
32

zoology

Understand and test language model architectures on synthetic tasks.
Python
160
star
33

lolcats

Repo for "LoLCATs: On Low-Rank Linearizing of Large Language Models"
Python
154
star
34

babble

A system for generating training labels via natural language explanations
Python
146
star
35

EmptyHeaded

Your worst case is our best case.
C++
138
star
36

domino

Python
134
star
37

blocking-tutorial

C++
132
star
38

mindbender

Tools for iterative knowledge base development with DeepDive
CoffeeScript
117
star
39

reef

Automatically labeling training data
Jupyter Notebook
106
star
40

fm_data_tasks

Foundation Models for Data Tasks
Python
100
star
41

fonduer-tutorials

A collection of simple tutorials for using Fonduer
Jupyter Notebook
100
star
42

eclair-agents

Automating enterprise workflows with multimodal agents
Jupyter Notebook
92
star
43

TreeStructure

Table Extraction Tool
Jupyter Notebook
90
star
44

CaffeConTroll

C++
76
star
45

epoxy

Interactive Model Iteration with Weak Supervision and Pre-Trained Embeddings
Python
76
star
46

HoroPCA

Hyperbolic PCA via Horospherical Projections
Python
68
star
47

structured-nets

Structured matrices for compressing neural networks
Python
66
star
48

hidden-stratification

Combating hidden stratification with GEORGE
Jupyter Notebook
62
star
49

numbskull

Numba-based version of DimmWitted Gibbs sampler
Python
46
star
50

prefix-linear-attention

Python
44
star
51

model-patching

Model Patching: Closing the Subgroup Performance Gap with Data Augmentation
Python
42
star
52

skill-it

Skill-It! A Data-Driven Skills Framework for Understanding and Training Language Models
Jupyter Notebook
41
star
53

cs145-notebooks-2016

Public materials for the Fall 2016 offering of CS145
Jupyter Notebook
35
star
54

mandoline

(ICML 2021) Mandoline: Model Evaluation under Distribution Shift
Python
31
star
55

mongoose

A Learnable LSH Framework for Efficient NN Training
Python
30
star
56

thanos-code

Code release for the paper Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning
Python
28
star
57

ukb-cardiac-mri

Weakly Supervised MRI Series Classification for the UK Biobank
Python
25
star
58

tuffy

Tuffy, a Markov Logic Network solver
Java
24
star
59

snorkel-superglue

Applying Snorkel to SuperGLUE
Jupyter Notebook
23
star
60

correct-n-contrast

Official code repository for Correct-N-Contrast
Python
21
star
61

ludwig-benchmarking-toolkit

Ludwig benchmark
Python
19
star
62

smallfry

Python
19
star
63

tabi

Code release for Type-Aware Bi-Encoders for Open-Domain Entity Retrieval
Python
19
star
64

lp_rffs

Low precision random Fourier features for kernel approximation
Python
19
star
65

ddlog

Compiler for writing DeepDive applications in a Datalog-like language — ⚠️🚧🛑 REPO MOVED TO DEEPDIVE 👇🏿
Scala
19
star
66

wonderbread

WONDERBREAD benchmark + dataset for BPM tasks
Jupyter Notebook
19
star
67

augmentation_code

Reproducible code for Augmentation paper
Python
18
star
68

sampler

DimmWitted Gibbs Sampler in C++ — ⚠️🚧🛑 REPO MOVED TO DEEPDIVE 👉🏿
C++
17
star
69

random_embedding

Python
16
star
70

snorkel-biocorpus

Python
16
star
71

ddbiolib

DeepDive Biomedical Tools
Python
15
star
72

bazaar

JavaScript
14
star
73

Omnivore

Omnivore Optimizer and Distributed CcT
C++
13
star
74

anchor-stability

A study of the downstream instability of word embeddings
Jupyter Notebook
12
star
75

medical-ned-integration

Cross-domain data integration for named entity disambiguation in biomedical text
Python
11
star
76

dd-genomics

The Genomics DeepDive project
Python
11
star
77

embroid

Embroid: Unsupervised Prediction Smoothing Can Improve Few-Shot Classification
Jupyter Notebook
11
star
78

torchhalp

Python
10
star
79

dimmwitted

C++
10
star
80

Accelerated-PCA

Accelerated Stochastic Power Iteration with Momentum
Jupyter Notebook
9
star
81

liger

Liger: Fusing Weak Supervision and Model Embeddings
Python
9
star
82

cross-modal-ws-demo

HTML
9
star
83

hyperE

HTML
8
star
84

treedlib

Jupyter Notebook
8
star
85

ivy-tutorial

An Introductory Tutorial for Ivy
Jupyter Notebook
7
star
86

observational

Observational Supervision for Medical Image Classification using Gaze Data
Jupyter Notebook
7
star
87

chinstrap

C++
6
star
88

quadrature-features

Code to generate kernel features using Gaussian quadrature
Python
6
star
89

icij-maude

Weakly supervised classification of adverse event reports from the FDA's MAUDE database.
Python
6
star
90

librarian

DeepDive Librarian for managing all data sets we publish and receive
Python
3
star
91

halp

Python
3
star
92

bert-pretraining

Python
2
star
93

d3m-model-search

D3M Model Search Component
Python
2
star
94

elementary

Data services and APIs
Python
1
star
95

dependency_model

Structure learning code from [ICML'19 paper](https://arxiv.org/abs/1903.05844)
Python
1
star