• Stars
    star
    77,931
  • Rank 75 (Top 0.01 %)
  • Language
    Python
  • License
    Other
  • Created over 7 years ago
  • Updated 1 day ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch Logo


PyTorch is a Python package that provides two high-level features:

  • Tensor computation (like NumPy) with strong GPU acceleration
  • Deep neural networks built on a tape-based autograd system

You can reuse your favorite Python packages such as NumPy, SciPy, and Cython to extend PyTorch when needed.

Our trunk health (Continuous Integration signals) can be found at hud.pytorch.org.

More About PyTorch

Learn the basics of PyTorch

At a granular level, PyTorch is a library that consists of the following components:

Component Description
torch A Tensor library like NumPy, with strong GPU support
torch.autograd A tape-based automatic differentiation library that supports all differentiable Tensor operations in torch
torch.jit A compilation stack (TorchScript) to create serializable and optimizable models from PyTorch code
torch.nn A neural networks library deeply integrated with autograd designed for maximum flexibility
torch.multiprocessing Python multiprocessing, but with magical memory sharing of torch Tensors across processes. Useful for data loading and Hogwild training
torch.utils DataLoader and other utility functions for convenience

Usually, PyTorch is used either as:

  • A replacement for NumPy to use the power of GPUs.
  • A deep learning research platform that provides maximum flexibility and speed.

Elaborating Further:

A GPU-Ready Tensor Library

If you use NumPy, then you have used Tensors (a.k.a. ndarray).

Tensor illustration

PyTorch provides Tensors that can live either on the CPU or the GPU and accelerates the computation by a huge amount.

We provide a wide variety of tensor routines to accelerate and fit your scientific computation needs such as slicing, indexing, mathematical operations, linear algebra, reductions. And they are fast!

Dynamic Neural Networks: Tape-Based Autograd

PyTorch has a unique way of building neural networks: using and replaying a tape recorder.

Most frameworks such as TensorFlow, Theano, Caffe, and CNTK have a static view of the world. One has to build a neural network and reuse the same structure again and again. Changing the way the network behaves means that one has to start from scratch.

With PyTorch, we use a technique called reverse-mode auto-differentiation, which allows you to change the way your network behaves arbitrarily with zero lag or overhead. Our inspiration comes from several research papers on this topic, as well as current and past work such as torch-autograd, autograd, Chainer, etc.

While this technique is not unique to PyTorch, it's one of the fastest implementations of it to date. You get the best of speed and flexibility for your crazy research.

Dynamic graph

Python First

PyTorch is not a Python binding into a monolithic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use NumPy / SciPy / scikit-learn etc. You can write your new neural network layers in Python itself, using your favorite libraries and use packages such as Cython and Numba. Our goal is to not reinvent the wheel where appropriate.

Imperative Experiences

PyTorch is designed to be intuitive, linear in thought, and easy to use. When you execute a line of code, it gets executed. There isn't an asynchronous view of the world. When you drop into a debugger or receive error messages and stack traces, understanding them is straightforward. The stack trace points to exactly where your code was defined. We hope you never spend hours debugging your code because of bad stack traces or asynchronous and opaque execution engines.

Fast and Lean

PyTorch has minimal framework overhead. We integrate acceleration libraries such as Intel MKL and NVIDIA (cuDNN, NCCL) to maximize speed. At the core, its CPU and GPU Tensor and neural network backends are mature and have been tested for years.

Hence, PyTorch is quite fast — whether you run small or large neural networks.

The memory usage in PyTorch is extremely efficient compared to Torch or some of the alternatives. We've written custom memory allocators for the GPU to make sure that your deep learning models are maximally memory efficient. This enables you to train bigger deep learning models than before.

Extensions Without Pain

Writing new neural network modules, or interfacing with PyTorch's Tensor API was designed to be straightforward and with minimal abstractions.

You can write new neural network layers in Python using the torch API or your favorite NumPy-based libraries such as SciPy.

If you want to write your layers in C/C++, we provide a convenient extension API that is efficient and with minimal boilerplate. No wrapper code needs to be written. You can see a tutorial here and an example here.

Installation

Binaries

Commands to install binaries via Conda or pip wheels are on our website: https://pytorch.org/get-started/locally/

NVIDIA Jetson Platforms

Python wheels for NVIDIA's Jetson Nano, Jetson TX1/TX2, Jetson Xavier NX/AGX, and Jetson AGX Orin are provided here and the L4T container is published here

They require JetPack 4.2 and above, and @dusty-nv and @ptrblck are maintaining them.

From Source

Prerequisites

If you are installing from source, you will need:

  • Python 3.8 or later (for Linux, Python 3.8.1+ is needed)
  • A compiler that fully supports C++17, such as clang or gcc (gcc 9.4.0 or newer is required)

We highly recommend installing an Anaconda environment. You will get a high-quality BLAS library (MKL) and you get controlled dependency versions regardless of your Linux distro.

If you want to compile with CUDA support, select a supported version of CUDA from our support matrix, then install the following:

Note: You could refer to the cuDNN Support Matrix for cuDNN versions with the various supported CUDA, CUDA driver and NVIDIA hardware

If you want to disable CUDA support, export the environment variable USE_CUDA=0. Other potentially useful environment variables may be found in setup.py.

If you are building for NVIDIA's Jetson platforms (Jetson Nano, TX1, TX2, AGX Xavier), Instructions to install PyTorch for Jetson Nano are available here

If you want to compile with ROCm support, install

  • AMD ROCm 4.0 and above installation
  • ROCm is currently supported only for Linux systems.

If you want to disable ROCm support, export the environment variable USE_ROCM=0. Other potentially useful environment variables may be found in setup.py.

Install Dependencies

Common

conda install cmake ninja
# Run this command from the PyTorch directory after cloning the source code using the “Get the PyTorch Source“ section below
pip install -r requirements.txt

On Linux

conda install intel::mkl-static intel::mkl-include
# CUDA only: Add LAPACK support for the GPU if needed
conda install -c pytorch magma-cuda110  # or the magma-cuda* that matches your CUDA version from https://anaconda.org/pytorch/repo

# (optional) If using torch.compile with inductor/triton, install the matching version of triton
# Run from the pytorch directory after cloning
make triton

On MacOS

# Add this package on intel x86 processor machines only
conda install intel::mkl-static intel::mkl-include
# Add these packages if torch.distributed is needed
conda install pkg-config libuv

On Windows

conda install intel::mkl-static intel::mkl-include
# Add these packages if torch.distributed is needed.
# Distributed package support on Windows is a prototype feature and is subject to changes.
conda install -c conda-forge libuv=1.39

Get the PyTorch Source

git clone --recursive https://github.com/pytorch/pytorch
cd pytorch
# if you are updating an existing checkout
git submodule sync
git submodule update --init --recursive

Install PyTorch

On Linux

If you would like to compile PyTorch with new C++ ABI enabled, then first run this command:

export _GLIBCXX_USE_CXX11_ABI=1

If you're compiling for AMD ROCm then first run this command:

# Only run this if you're compiling for ROCm
python tools/amd_build/build_amd.py

Install PyTorch

export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
python setup.py develop

Aside: If you are using Anaconda, you may experience an error caused by the linker:

build/temp.linux-x86_64-3.7/torch/csrc/stub.o: file not recognized: file format not recognized
collect2: error: ld returned 1 exit status
error: command 'g++' failed with exit status 1

This is caused by ld from the Conda environment shadowing the system ld. You should use a newer version of Python that fixes this issue. The recommended Python version is 3.8.1+.

On macOS

python3 setup.py develop

On Windows

Choose Correct Visual Studio Version.

PyTorch CI uses Visual C++ BuildTools, which come with Visual Studio Enterprise, Professional, or Community Editions. You can also install the build tools from https://visualstudio.microsoft.com/visual-cpp-build-tools/. The build tools do not come with Visual Studio Code by default.

If you want to build legacy python code, please refer to Building on legacy code and CUDA

CPU-only builds

In this mode PyTorch computations will run on your CPU, not your GPU

conda activate
python setup.py develop

Note on OpenMP: The desired OpenMP implementation is Intel OpenMP (iomp). In order to link against iomp, you'll need to manually download the library and set up the building environment by tweaking CMAKE_INCLUDE_PATH and LIB. The instruction here is an example for setting up both MKL and Intel OpenMP. Without these configurations for CMake, Microsoft Visual C OpenMP runtime (vcomp) will be used.

CUDA based build

In this mode PyTorch computations will leverage your GPU via CUDA for faster number crunching

NVTX is needed to build Pytorch with CUDA. NVTX is a part of CUDA distributive, where it is called "Nsight Compute". To install it onto an already installed CUDA run CUDA installation once again and check the corresponding checkbox. Make sure that CUDA with Nsight Compute is installed after Visual Studio.

Currently, VS 2017 / 2019, and Ninja are supported as the generator of CMake. If ninja.exe is detected in PATH, then Ninja will be used as the default generator, otherwise, it will use VS 2017 / 2019.
If Ninja is selected as the generator, the latest MSVC will get selected as the underlying toolchain.

Additional libraries such as Magma, oneDNN, a.k.a. MKLDNN or DNNL, and Sccache are often needed. Please refer to the installation-helper to install them.

You can refer to the build_pytorch.bat script for some other environment variables configurations

cmd

:: Set the environment variables after you have downloaded and unzipped the mkl package,
:: else CMake would throw an error as `Could NOT find OpenMP`.
set CMAKE_INCLUDE_PATH={Your directory}\mkl\include
set LIB={Your directory}\mkl\lib;%LIB%

:: Read the content in the previous section carefully before you proceed.
:: [Optional] If you want to override the underlying toolset used by Ninja and Visual Studio with CUDA, please run the following script block.
:: "Visual Studio 2019 Developer Command Prompt" will be run automatically.
:: Make sure you have CMake >= 3.12 before you do this when you use the Visual Studio generator.
set CMAKE_GENERATOR_TOOLSET_VERSION=14.27
set DISTUTILS_USE_SDK=1
for /f "usebackq tokens=*" %i in (`"%ProgramFiles(x86)%\Microsoft Visual Studio\Installer\vswhere.exe" -version [15^,17^) -products * -latest -property installationPath`) do call "%i\VC\Auxiliary\Build\vcvarsall.bat" x64 -vcvars_ver=%CMAKE_GENERATOR_TOOLSET_VERSION%

:: [Optional] If you want to override the CUDA host compiler
set CUDAHOSTCXX=C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.27.29110\bin\HostX64\x64\cl.exe

python setup.py develop
Adjust Build Options (Optional)

You can adjust the configuration of cmake variables optionally (without building first), by doing the following. For example, adjusting the pre-detected directories for CuDNN or BLAS can be done with such a step.

On Linux

export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
python setup.py build --cmake-only
ccmake build  # or cmake-gui build

On macOS

export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py build --cmake-only
ccmake build  # or cmake-gui build

Docker Image

Using pre-built images

You can also pull a pre-built docker image from Docker Hub and run with docker v19.03+

docker run --gpus all --rm -ti --ipc=host pytorch/pytorch:latest

Please note that PyTorch uses shared memory to share data between processes, so if torch multiprocessing is used (e.g. for multithreaded data loaders) the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host or --shm-size command line options to nvidia-docker run.

Building the image yourself

NOTE: Must be built with a docker version > 18.06

The Dockerfile is supplied to build images with CUDA 11.1 support and cuDNN v8. You can pass PYTHON_VERSION=x.y make variable to specify which Python version is to be used by Miniconda, or leave it unset to use the default.

make -f docker.Makefile
# images are tagged as docker.io/${your_docker_username}/pytorch

You can also pass the CMAKE_VARS="..." environment variable to specify additional CMake variables to be passed to CMake during the build. See setup.py for the list of available variables.

CMAKE_VARS="BUILD_CAFFE2=ON BUILD_CAFFE2_OPS=ON" make -f docker.Makefile

Building the Documentation

To build documentation in various formats, you will need Sphinx and the readthedocs theme.

cd docs/
pip install -r requirements.txt

You can then build the documentation by running make <format> from the docs/ folder. Run make to get a list of all available output formats.

If you get a katex error run npm install katex. If it persists, try npm install -g katex

Note: if you installed nodejs with a different package manager (e.g., conda) then npm will probably install a version of katex that is not compatible with your version of nodejs and doc builds will fail. A combination of versions that is known to work is [email protected] and [email protected]. To install the latter with npm you can run npm install -g [email protected]

Previous Versions

Installation instructions and binaries for previous PyTorch versions may be found on our website.

Getting Started

Three-pointers to get you started:

Resources

Communication

Releases and Contributing

Typically, PyTorch has three minor releases a year. Please let us know if you encounter a bug by filing an issue.

We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion.

If you plan to contribute new features, utility functions, or extensions to the core, please first open an issue and discuss the feature with us. Sending a PR without discussion might end up resulting in a rejected PR because we might be taking the core in a different direction than you might be aware of.

To learn more about making a contribution to Pytorch, please see our Contribution page. For more information about PyTorch releases, see Release page.

The Team

PyTorch is a community-driven project with several skillful engineers and researchers contributing to it.

PyTorch is currently maintained by Soumith Chintala, Gregory Chanan, Dmytro Dzhulgakov, Edward Yang, and Nikita Shulga with major contributions coming from hundreds of talented individuals in various forms and means. A non-exhaustive but growing list needs to mention: Trevor Killeen, Sasank Chilamkurthy, Sergey Zagoruyko, Adam Lerer, Francisco Massa, Alykhan Tejani, Luca Antiga, Alban Desmaison, Andreas Koepf, James Bradbury, Zeming Lin, Yuandong Tian, Guillaume Lample, Marat Dukhan, Natalia Gimelshein, Christian Sarofeen, Martin Raison, Edward Yang, Zachary Devito.

Note: This project is unrelated to hughperkins/pytorch with the same name. Hugh is a valuable contributor to the Torch community and has helped with many things Torch and PyTorch.

License

PyTorch has a BSD-style license, as found in the LICENSE file.

More Repositories

1

examples

A set of examples around pytorch in Vision, Text, Reinforcement Learning, etc.
Python
21,700
star
2

vision

Datasets, Transforms and Models specific to Computer Vision
Python
15,231
star
3

tutorials

PyTorch tutorials.
Jupyter Notebook
7,713
star
4

captum

Model interpretability and understanding for PyTorch
Python
4,482
star
5

ignite

High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.
Python
4,443
star
6

serve

Serve, optimize and scale PyTorch models in production
Java
3,950
star
7

text

Models, data loaders and abstractions for language processing, powered by PyTorch
Python
3,426
star
8

ELF

ELF: a platform for game research with AlphaGoZero/AlphaZero reimplementation
C++
3,340
star
9

glow

Compiler for Neural Network hardware accelerators
C++
3,116
star
10

botorch

Bayesian optimization in PyTorch
Jupyter Notebook
2,920
star
11

audio

Data manipulation and transformation for audio signal processing, powered by PyTorch
Python
2,355
star
12

TensorRT

PyTorch/TorchScript/FX compiler for NVIDIA GPUs using TensorRT
Python
2,327
star
13

xla

Enabling PyTorch on XLA Devices (e.g. Google TPU)
C++
2,290
star
14

rl

A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.
Python
1,768
star
15

torchrec

Pytorch domain library for recommendation systems
Python
1,683
star
16

tnt

A lightweight library for PyTorch training tools and utilities
Python
1,606
star
17

opacus

Training PyTorch models with differential privacy
Jupyter Notebook
1,582
star
18

QNNPACK

Quantized Neural Network PACKage - mobile-optimized implementation of quantized neural network operators
C
1,506
star
19

android-demo-app

PyTorch android examples of usage in applications
Java
1,392
star
20

functorch

functorch is JAX-like composable function transforms for PyTorch.
Jupyter Notebook
1,363
star
21

hub

Submission to https://pytorch.org/hub/
Python
1,360
star
22

data

A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.
Python
1,059
star
23

FBGEMM

FB (Facebook) + GEMM (General Matrix-Matrix Multiplication) - https://code.fb.com/ml-applications/fbgemm/
C++
1,050
star
24

torchdynamo

A Python-level JIT compiler designed to make unmodified PyTorch programs faster.
Python
945
star
25

extension-cpp

C++ extensions in PyTorch
Python
924
star
26

cpuinfo

CPU INFOrmation library (x86/x86-64/ARM/ARM64, Linux/Windows/Android/macOS/iOS)
C
913
star
27

translate

Translate - a PyTorch Language Library
Python
811
star
28

benchmark

TorchBench is a collection of open source benchmarks used to evaluate PyTorch performance.
Python
759
star
29

elastic

PyTorch elastic training
Python
725
star
30

executorch

On-device AI across mobile, embedded and edge for PyTorch
C++
692
star
31

torcharrow

High performance model preprocessing library on PyTorch
Python
625
star
32

ios-demo-app

PyTorch iOS examples
Swift
578
star
33

kineto

A CPU+GPU Profiling library that provides access to timeline traces and hardware performance counters.
HTML
578
star
34

tensordict

TensorDict is a pytorch dedicated tensor container.
Python
577
star
35

PiPPy

Pipeline Parallelism for PyTorch
Python
538
star
36

tvm

TVM integration into PyTorch
C++
450
star
37

contrib

Implementations of ideas from recent papers
Python
388
star
38

ort

Accelerate PyTorch models with ONNX Runtime
Python
346
star
39

accimage

high performance image loading and augmenting routines mimicking PIL.Image interface
C
318
star
40

builder

Continuous builder and binary build scripts for pytorch
Shell
317
star
41

torchx

TorchX is a universal job launcher for PyTorch applications. TorchX is designed to have fast iteration time for training/research and support for E2E production ML pipelines when you're ready.
Python
284
star
42

extension-ffi

Examples of C extensions for PyTorch
Python
254
star
43

nestedtensor

[Prototype] Tools for the concurrent manipulation of variably sized Tensors.
Jupyter Notebook
251
star
44

tensorpipe

A tensor-aware point-to-point communication primitive for machine learning
C++
237
star
45

pytorch.github.io

The website for PyTorch
HTML
210
star
46

hydra-torch

Configuration classes enabling type-safe PyTorch configuration for Hydra apps
Python
197
star
47

cppdocs

PyTorch C++ API Documentation
HTML
186
star
48

torcheval

A library that contains a rich collection of performant PyTorch model metrics, a simple interface to create new metrics, a toolkit to facilitate metric computation in distributed training and tools for PyTorch model evaluations.
Python
177
star
49

workshops

This is a repository for all workshop related materials.
Jupyter Notebook
172
star
50

multipy

torch::deploy (multipy for non-torch uses) is a system that lets you get around the GIL problem by running multiple Python interpreters in a single C++ process.
C++
164
star
51

torchsnapshot

A performant, memory-efficient checkpointing library for PyTorch applications, designed with large, complex distributed workloads in mind.
Python
125
star
52

java-demo

Jupyter Notebook
119
star
53

rfcs

PyTorch RFCs (experimental)
110
star
54

torchdistx

Torch Distributed Experimental
Python
109
star
55

extension-script

Example repository for custom C++/CUDA operators for TorchScript
Python
109
star
56

csprng

Cryptographically secure pseudorandom number generators for PyTorch
Batchfile
97
star
57

pytorch_sphinx_theme

PyTorch Sphinx Theme
CSS
91
star
58

test-infra

This repository hosts code that supports the testing infrastructure for the main PyTorch repo. For example, this repo hosts the logic to track disabled tests and slow tests, as well as our continuation integration jobs HUD/dashboard.
TypeScript
61
star
59

maskedtensor

MaskedTensors for PyTorch
Python
38
star
60

add-annotations-github-action

A GitHub action to run clang-tidy and annotate failures
JavaScript
13
star
61

probot

PyTorch GitHub bot written in probot
TypeScript
11
star
62

ci-hud

HUD for CI activity on `pytorch/pytorch`, provides a top level view for jobs to easily discern regressions
JavaScript
10
star
63

ossci-job-dsl

Jenkins job definitions for OSSCI
Groovy
9
star
64

pytorch-integration-testing

Testing downstream libraries using pytorch release candidates
Makefile
5
star
65

torchhub_testing

Repo to test torchhub. Nothing to see here.
4
star
66

dr-ci

Diagnose and remediate CI jobs
Haskell
2
star
67

pytorch-ci-dockerfiles

Scripts for generating docker images for PyTorch CI
2
star
68

labeler-github-action

GitHub action for labeling issues and pull requests based on conditions
TypeScript
1
star