• Stars
    star
    4,507
  • Rank 9,474 (Top 0.2 %)
  • Language
    Python
  • License
    BSD 3-Clause "New...
  • Created about 7 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.
image image imageimage image image
image image image image image
image image image
image image image image
image Twitter facebook numfocus discord
image link

TL;DR

Ignite is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.

PyTorch-Ignite teaser

Click on the image to see complete code

Features

  • Less code than pure PyTorch while ensuring maximum control and simplicity

  • Library approach and no program's control inversion - Use ignite where and when you need

  • Extensible API for metrics, experiment managers, and other components

Table of Contents

Why Ignite?

Ignite is a library that provides three high-level features:

  • Extremely simple engine and event system
  • Out-of-the-box metrics to easily evaluate models
  • Built-in handlers to compose training pipeline, save artifacts and log parameters and metrics

Simplified training and validation loop

No more coding for/while loops on epochs and iterations. Users instantiate engines and run them.

Example
from ignite.engine import Engine, Events, create_supervised_evaluator
from ignite.metrics import Accuracy


# Setup training engine:
def train_step(engine, batch):
    # Users can do whatever they need on a single iteration
    # Eg. forward/backward pass for any number of models, optimizers, etc
    # ...

trainer = Engine(train_step)

# Setup single model evaluation engine
evaluator = create_supervised_evaluator(model, metrics={"accuracy": Accuracy()})

def validation():
    state = evaluator.run(validation_data_loader)
    # print computed metrics
    print(trainer.state.epoch, state.metrics)

# Run model's validation at the end of each epoch
trainer.add_event_handler(Events.EPOCH_COMPLETED, validation)

# Start the training
trainer.run(training_data_loader, max_epochs=100)

Power of Events & Handlers

The cool thing with handlers is that they offer unparalleled flexibility (compared to, for example, callbacks). Handlers can be any function: e.g. lambda, simple function, class method, etc. Thus, we do not require to inherit from an interface and override its abstract methods which could unnecessarily bulk up your code and its complexity.

Execute any number of functions whenever you wish

Examples
trainer.add_event_handler(Events.STARTED, lambda _: print("Start training"))

# attach handler with args, kwargs
mydata = [1, 2, 3, 4]
logger = ...

def on_training_ended(data):
    print(f"Training is ended. mydata={data}")
    # User can use variables from another scope
    logger.info("Training is ended")


trainer.add_event_handler(Events.COMPLETED, on_training_ended, mydata)
# call any number of functions on a single event
trainer.add_event_handler(Events.COMPLETED, lambda engine: print(engine.state.times))

@trainer.on(Events.ITERATION_COMPLETED)
def log_something(engine):
    print(engine.state.output)

Built-in events filtering

Examples
# run the validation every 5 epochs
@trainer.on(Events.EPOCH_COMPLETED(every=5))
def run_validation():
    # run validation

# change some training variable once on 20th epoch
@trainer.on(Events.EPOCH_STARTED(once=20))
def change_training_variable():
    # ...

# Trigger handler with customly defined frequency
@trainer.on(Events.ITERATION_COMPLETED(event_filter=first_x_iters))
def log_gradients():
    # ...

Stack events to share some actions

Examples

Events can be stacked together to enable multiple calls:

@trainer.on(Events.COMPLETED | Events.EPOCH_COMPLETED(every=10))
def run_validation():
    # ...

Custom events to go beyond standard events

Examples

Custom events related to backward and optimizer step calls:

from ignite.engine import EventEnum


class BackpropEvents(EventEnum):
    BACKWARD_STARTED = 'backward_started'
    BACKWARD_COMPLETED = 'backward_completed'
    OPTIM_STEP_COMPLETED = 'optim_step_completed'

def update(engine, batch):
    # ...
    loss = criterion(y_pred, y)
    engine.fire_event(BackpropEvents.BACKWARD_STARTED)
    loss.backward()
    engine.fire_event(BackpropEvents.BACKWARD_COMPLETED)
    optimizer.step()
    engine.fire_event(BackpropEvents.OPTIM_STEP_COMPLETED)
    # ...

trainer = Engine(update)
trainer.register_events(*BackpropEvents)

@trainer.on(BackpropEvents.BACKWARD_STARTED)
def function_before_backprop(engine):
    # ...

Out-of-the-box metrics

Example
precision = Precision(average=False)
recall = Recall(average=False)
F1_per_class = (precision * recall * 2 / (precision + recall))
F1_mean = F1_per_class.mean()  # torch mean method
F1_mean.attach(engine, "F1")

Installation

From pip:

pip install pytorch-ignite

From conda:

conda install ignite -c pytorch

From source:

pip install git+https://github.com/pytorch/ignite

Nightly releases

From pip:

pip install --pre pytorch-ignite

From conda (this suggests to install pytorch nightly release instead of stable version as dependency):

conda install ignite -c pytorch-nightly

Docker Images

Using pre-built images

Pull a pre-built docker image from our Docker Hub and run it with docker v19.03+.

docker run --gpus all -it -v $PWD:/workspace/project --network=host --shm-size 16G pytorchignite/base:latest /bin/bash
List of available pre-built images

Base

  • pytorchignite/base:latest
  • pytorchignite/apex:latest
  • pytorchignite/hvd-base:latest
  • pytorchignite/hvd-apex:latest
  • pytorchignite/msdp-apex:latest

Vision:

  • pytorchignite/vision:latest
  • pytorchignite/hvd-vision:latest
  • pytorchignite/apex-vision:latest
  • pytorchignite/hvd-apex-vision:latest
  • pytorchignite/msdp-apex-vision:latest

NLP:

  • pytorchignite/nlp:latest
  • pytorchignite/hvd-nlp:latest
  • pytorchignite/apex-nlp:latest
  • pytorchignite/hvd-apex-nlp:latest
  • pytorchignite/msdp-apex-nlp:latest

For more details, see here.

Getting Started

Few pointers to get you started:

Documentation

Additional Materials

Examples

Tutorials

Reproducible Training Examples

Inspired by torchvision/references, we provide several reproducible baselines for vision tasks:

  • ImageNet - logs on Ignite Trains server coming soon ...
  • Pascal VOC2012 - logs on Ignite Trains server coming soon ...

Features:

Code-Generator application

The easiest way to create your training scripts with PyTorch-Ignite:

Communication

User feedback

We have created a form for "user feedback". We appreciate any type of feedback, and this is how we would like to see our community:

  • If you like the project and want to say thanks, this the right place.
  • If you do not like something, please, share it with us, and we can see how to improve it.

Thank you!

Contributing

Please see the contribution guidelines for more information.

As always, PRs are welcome :)

Projects using Ignite

Research papers
Blog articles, tutorials, books
Toolkits
Others

See other projects at "Used by"

If your project implements a paper, represents other use-cases not covered in our official tutorials, Kaggle competition's code, or just your code presents interesting results and uses Ignite. We would like to add your project to this list, so please send a PR with brief description of the project.

Citing Ignite

If you use PyTorch-Ignite in a scientific publication, we would appreciate citations to our project.

@misc{pytorch-ignite,
  author = {V. Fomin and J. Anmol and S. Desroziers and J. Kriss and A. Tejani},
  title = {High-level library to help with training neural networks in PyTorch},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/pytorch/ignite}},
}

About the team & Disclaimer

PyTorch-Ignite is a NumFOCUS Affiliated Project, operated and maintained by volunteers in the PyTorch community in their capacities as individuals (and not as representatives of their employers). See the "About us" page for a list of core contributors. For usage questions and issues, please see the various channels here. For all other questions and inquiries, please send an email to [email protected].

More Repositories

1

pytorch

Tensors and Dynamic neural networks in Python with strong GPU acceleration
Python
83,553
star
2

examples

A set of examples around pytorch in Vision, Text, Reinforcement Learning, etc.
Python
22,311
star
3

vision

Datasets, Transforms and Models specific to Computer Vision
Python
15,925
star
4

tutorials

PyTorch tutorials.
Jupyter Notebook
8,075
star
5

captum

Model interpretability and understanding for PyTorch
Python
4,781
star
6

serve

Serve, optimize and scale PyTorch models in production
Java
4,190
star
7

torchtune

PyTorch native finetuning library
Python
4,163
star
8

text

Models, data loaders and abstractions for language processing, powered by PyTorch
Python
3,490
star
9

ELF

ELF: a platform for game research with AlphaGoZero/AlphaZero reimplementation
C++
3,364
star
10

glow

Compiler for Neural Network hardware accelerators
C++
3,197
star
11

botorch

Bayesian optimization in PyTorch
Jupyter Notebook
3,043
star
12

torchchat

Run PyTorch LLMs locally on servers, desktop and mobile
Python
3,040
star
13

TensorRT

PyTorch/TorchScript/FX compiler for NVIDIA GPUs using TensorRT
Python
2,565
star
14

audio

Data manipulation and transformation for audio signal processing, powered by PyTorch
Python
2,471
star
15

xla

Enabling PyTorch on XLA Devices (e.g. Google TPU)
C++
2,469
star
16

rl

A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.
Python
2,241
star
17

torchtitan

A native PyTorch Library for large model training
Python
2,130
star
18

executorch

On-device AI across mobile, embedded and edge for PyTorch
C++
1,954
star
19

torchrec

Pytorch domain library for recommendation systems
Python
1,852
star
20

opacus

Training PyTorch models with differential privacy
Jupyter Notebook
1,666
star
21

tnt

A lightweight library for PyTorch training tools and utilities
Python
1,650
star
22

QNNPACK

Quantized Neural Network PACKage - mobile-optimized implementation of quantized neural network operators
C
1,519
star
23

android-demo-app

PyTorch android examples of usage in applications
Java
1,460
star
24

functorch

functorch is JAX-like composable function transforms for PyTorch.
Jupyter Notebook
1,388
star
25

hub

Submission to https://pytorch.org/hub/
Python
1,384
star
26

FBGEMM

FB (Facebook) + GEMM (General Matrix-Matrix Multiplication) - https://code.fb.com/ml-applications/fbgemm/
C++
1,156
star
27

data

A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.
Python
1,112
star
28

cpuinfo

CPU INFOrmation library (x86/x86-64/ARM/ARM64, Linux/Windows/Android/macOS/iOS)
C
989
star
29

torchdynamo

A Python-level JIT compiler designed to make unmodified PyTorch programs faster.
Python
989
star
30

extension-cpp

C++ extensions in PyTorch
Python
980
star
31

benchmark

TorchBench is a collection of open source benchmarks used to evaluate PyTorch performance.
Python
841
star
32

translate

Translate - a PyTorch Language Library
Python
820
star
33

tensordict

TensorDict is a pytorch dedicated tensor container.
Python
816
star
34

elastic

PyTorch elastic training
Python
728
star
35

PiPPy

Pipeline Parallelism for PyTorch
Python
698
star
36

kineto

A CPU+GPU Profiling library that provides access to timeline traces and hardware performance counters.
HTML
682
star
37

torcharrow

High performance model preprocessing library on PyTorch
Python
641
star
38

ao

PyTorch native quantization and sparsity for training and inference
Python
630
star
39

ios-demo-app

PyTorch iOS examples
Swift
595
star
40

tvm

TVM integration into PyTorch
C++
451
star
41

contrib

Implementations of ideas from recent papers
Python
390
star
42

ort

Accelerate PyTorch models with ONNX Runtime
Python
353
star
43

builder

Continuous builder and binary build scripts for pytorch
Shell
325
star
44

torchx

TorchX is a universal job launcher for PyTorch applications. TorchX is designed to have fast iteration time for training/research and support for E2E production ML pipelines when you're ready.
Python
319
star
45

accimage

high performance image loading and augmenting routines mimicking PIL.Image interface
C
317
star
46

extension-ffi

Examples of C extensions for PyTorch
Python
257
star
47

nestedtensor

[Prototype] Tools for the concurrent manipulation of variably sized Tensors.
Jupyter Notebook
252
star
48

tensorpipe

A tensor-aware point-to-point communication primitive for machine learning
C++
247
star
49

pytorch.github.io

The website for PyTorch
HTML
222
star
50

torcheval

A library that contains a rich collection of performant PyTorch model metrics, a simple interface to create new metrics, a toolkit to facilitate metric computation in distributed training and tools for PyTorch model evaluations.
Python
210
star
51

cppdocs

PyTorch C++ API Documentation
HTML
206
star
52

workshops

This is a repository for all workshop related materials.
Jupyter Notebook
204
star
53

hydra-torch

Configuration classes enabling type-safe PyTorch configuration for Hydra apps
Python
199
star
54

multipy

torch::deploy (multipy for non-torch uses) is a system that lets you get around the GIL problem by running multiple Python interpreters in a single C++ process.
C++
169
star
55

torchsnapshot

A performant, memory-efficient checkpointing library for PyTorch applications, designed with large, complex distributed workloads in mind.
Python
142
star
56

java-demo

Jupyter Notebook
126
star
57

rfcs

PyTorch RFCs (experimental)
120
star
58

torchdistx

Torch Distributed Experimental
Python
115
star
59

extension-script

Example repository for custom C++/CUDA operators for TorchScript
Python
112
star
60

csprng

Cryptographically secure pseudorandom number generators for PyTorch
Batchfile
105
star
61

pytorch_sphinx_theme

PyTorch Sphinx Theme
CSS
94
star
62

test-infra

This repository hosts code that supports the testing infrastructure for the main PyTorch repo. For example, this repo hosts the logic to track disabled tests and slow tests, as well as our continuation integration jobs HUD/dashboard.
TypeScript
78
star
63

expecttest

Python
71
star
64

torchcodec

PyTorch video decoding
Python
46
star
65

maskedtensor

MaskedTensors for PyTorch
Python
38
star
66

add-annotations-github-action

A GitHub action to run clang-tidy and annotate failures
JavaScript
13
star
67

ci-hud

HUD for CI activity on `pytorch/pytorch`, provides a top level view for jobs to easily discern regressions
JavaScript
11
star
68

probot

PyTorch GitHub bot written in probot
TypeScript
11
star
69

ossci-job-dsl

Jenkins job definitions for OSSCI
Groovy
10
star
70

pytorch-integration-testing

Testing downstream libraries using pytorch release candidates
Makefile
6
star
71

docs

This repository is automatically generated to contain the website source for the PyTorch documentation at https//pytorch.org/docs.
HTML
4
star
72

torchhub_testing

Repo to test torchhub. Nothing to see here.
4
star
73

dr-ci

Diagnose and remediate CI jobs
Haskell
2
star
74

pytorch-ci-dockerfiles

Scripts for generating docker images for PyTorch CI
2
star
75

labeler-github-action

GitHub action for labeling issues and pull requests based on conditions
TypeScript
1
star