• Stars
    star
    353
  • Rank 120,322 (Top 3 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 4 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Accelerate PyTorch models with ONNX Runtime

A library for developing and deploying PyTorch models using ONNX Runtime.


InstallationTrainingInferenceDocsLicense

torch-ort python pytorch API Checks Docs


Introduction

A library for accelerating PyTorch models using ONNX Runtime:

  • torch-ort to train PyTorch models faster with ONNX Runtime
  • moe to scale large models and improve their quality
  • torch-ort-infer to perform inference on PyTorch models with ONNX Runtime and Intel® OpenVINO™

🚀 Installation

Install for training

Pre-requisites

You need a machine with at least one NVIDIA or AMD GPU to run ONNX Runtime for PyTorch.

You can install and run torch-ort in your local environment, or with Docker.

Install in a local Python environment

  1. Install CUDA

  2. Install CuDNN

  3. Install torch-ort

    • pip install torch-ort
  4. Run post-installation script for ORTModule

    • python -m torch_ort.configure

Get install instructions for other combinations in the Get Started Easily section at https://www.onnxruntime.ai/ under the Optimize Training tab.

Verify your installation

  1. Clone this repo

  2. Install extra dependencies

    • pip install wget pandas sklearn transformers
  3. Run a test training script

    • python ./ort/tests/bert_for_sequence_classification.py

Install Mixture Of Experts

Mixture of Experts layer implementation is available in the ort_moe folder.

Clone this repo

git clone https://github.com/pytorch/ort.git

Build MoE

cd ort_moe
pip install build # Install PyPA build
python -m build

Install for Inference

Prerequisites

  • Ubuntu 18.04, 20.04
  • Python* 3.7, 3.8 or 3.9

Install in a local Python environment

  • pip install torch-ort-infer[openvino]
  • Run post installation configuration script python -m torch_ort.configure

Verify your installation

  1. Clone this repo

  2. Install extra dependencies

    • pip install wget pandas sklearn transformers
  3. Run a test script

    • python ./torch_ort_inference/tests/bert_for_sequence_classification.py

📈 Training

The torch-ort library accelerates training of large transformer PyTorch models to reduce the training time and GPU cost with a few lines of code change. It is built on top of highly successful and proven technologies of ONNX Runtime and ONNX format and includes the ONNX Runtime Optimizer and Data Sampler.

Add ONNX Runtime for PyTorch to your PyTorch training script

from torch_ort import ORTModule
model = ORTModule(model)
# PyTorch training script follows

Usage of FusedAdam and FP16 Optimizer (Optional)

import torch
from torch_ort.optim import FusedAdam
class NeuralNet(torch.nn.Module):
    ...
# Only supports GPU Currently.
device = "cuda"
model = NeuralNet(...).to(device)
ort_fused_adam_optimizer = FusedAdam(
    model.parameters(), lr=1e-3, betas=(0.9, 0.999), weight_decay=0.01, eps=1e-8
)

# To use FP16_Optimizer, Add these lines : 
from torch_ort.optim import FP16_Optimizer
ort_fused_adam_optimizer = FP16_Optimizer(ort_fused_adam_optimizer)


loss = model(...).sum()
loss.backward()
ort_fused_adam_optimizer.step()
ort_fused_adam_optimizer.zero_grad()

For detailed documentation see FusedAdam

For a full working example see FusedAdam Test Example

FP16_Optimizer is a simple wrapper to replace inefficient FP16_Optimizer function calls implemented by libraries for example Apex, DeepSpeed, Megatron-LM.

For detailed documentation see FP16 Optimizer

Usage of LoadBalancingDistributedSampler

import torch
from torch.utils.data import DataLoader 
from torch_ort.utils.data import LoadBalancingDistributedSampler
class MyDataset(torch.utils.data.Dataset):
   ...
   
def collate_fn(data): 
    ...
    return samples, label_list 
samples = [...] 
labels = [...] 
dataset = MyDataset(samples, labels) 
data_sampler = sampler.LoadBalancingDistributedSampler( 
    dataset, complexity_fn=complexity_fn, world_size=2, rank=0, shuffle=False 
) 
train_dataloader = DataLoader(dataset, batch_size=2, sampler=data_sampler, collate_fn=collate_fn) 
for batched_data, batched_label in train_dataloader: 
    optimizer.zero_grad() 
    loss = loss_fn(model(batched_data) , batched_labels) 
    loss.backward() 
    optimizer.step() 
    

For detailed documentation see LoadBalancingDistributedSampler

For a full working example see LoadBalancingDistributedSampler Test Example

Samples

To see torch-ort in action, see https://github.com/microsoft/onnxruntime-training-examples, which shows you how to train the most popular HuggingFace models.

🤓 Mixture of Experts

To run MoE, add the layer to your model as described in the tutorial: ort_moe/docs/tutorials/moe_tutorial.py

For more details, see ort_moe/docs/moe.md

Note: ONNX Runtime is not required to run the MoE layer. It is integrated in standalone PyTorch.

🎯 Inference

ONNX Runtime for PyTorch supports PyTorch model inference using ONNX Runtime and Intel® OpenVINO™.

It is available via the torch-ort-infer python package. This package enables OpenVINO™ Execution Provider for ONNX Runtime by default for accelerating inference on various Intel® CPUs, Intel® integrated GPUs, and Intel® Movidius™ Vision Processing Units - referred to as VPU.

Supported Execution Providers

Execution Providers
OpenVINO openvino

Provider Options

Users can configure different options for a given Execution Provider to run inference. As an example, OpenVINO™ Execution Provider options can be configured as shown below:

from torch_ort import ORTInferenceModule, OpenVINOProviderOptions
provider_options = OpenVINOProviderOptions(backend = "GPU", precision = "FP16")
model = ORTInferenceModule(model, provider_options = provider_options)

# PyTorch inference script follows

List of Provider Options

Supported backend-precision combinations:

Backend Precision
CPU FP32
GPU FP32
GPU FP16
MYRIAD FP16

If no provider options are specified by user, OpenVINO™ Execution Provider is enabled with following options by default:

backend = "CPU"
precision = "FP32"

For more details on APIs, see usage.md.

Code Sample

Below is an example of how you can leverage OpenVINO™ integration with Torch-ORT in a simple NLP usecase.

A pretrained BERT model fine-tuned on the CoLA dataset from HuggingFace model hub is used to predict grammar correctness on a given input text.

from transformers 
import AutoTokenizer, AutoModelForSequenceClassification
import numpy as np
from torch_ort import ORTInferenceModule
tokenizer = AutoTokenizer.from_pretrained(
            "textattack/bert-base-uncased-CoLA")
model = AutoModelForSequenceClassification.from_pretrained(
        "textattack/bert-base-uncased-CoLA")
# Wrap model in ORTInferenceModule to prepare the model for inference using OpenVINO Execution Provider on CPU
model = ORTInferenceModule(model)
text = "Replace me any text by you'd like ."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
# Post processing
logits = output.logits
logits = logits.detach().cpu().numpy()
# predictions
pred = np.argmax(logits, axis=1).flatten()
print("Grammar correctness label (0=unacceptable, 1=acceptable)")
print(pred)

Samples

To see OpenVINO™ integration with Torch-ORT in action, see demos, which shows you how to run inference on some of the most popular Deep Learning models.

🤝 Contribute

Please refer to our contributing guide for more information on how to contribute!

License

This project has an MIT license, as found in the LICENSE file.

More Repositories

1

pytorch

Tensors and Dynamic neural networks in Python with strong GPU acceleration
Python
83,553
star
2

examples

A set of examples around pytorch in Vision, Text, Reinforcement Learning, etc.
Python
22,311
star
3

vision

Datasets, Transforms and Models specific to Computer Vision
Python
15,925
star
4

tutorials

PyTorch tutorials.
Jupyter Notebook
8,075
star
5

captum

Model interpretability and understanding for PyTorch
Python
4,781
star
6

ignite

High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.
Python
4,507
star
7

serve

Serve, optimize and scale PyTorch models in production
Java
4,190
star
8

torchtune

PyTorch native finetuning library
Python
4,163
star
9

text

Models, data loaders and abstractions for language processing, powered by PyTorch
Python
3,490
star
10

ELF

ELF: a platform for game research with AlphaGoZero/AlphaZero reimplementation
C++
3,364
star
11

glow

Compiler for Neural Network hardware accelerators
C++
3,197
star
12

botorch

Bayesian optimization in PyTorch
Jupyter Notebook
3,043
star
13

torchchat

Run PyTorch LLMs locally on servers, desktop and mobile
Python
3,040
star
14

TensorRT

PyTorch/TorchScript/FX compiler for NVIDIA GPUs using TensorRT
Python
2,565
star
15

audio

Data manipulation and transformation for audio signal processing, powered by PyTorch
Python
2,471
star
16

xla

Enabling PyTorch on XLA Devices (e.g. Google TPU)
C++
2,469
star
17

rl

A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.
Python
2,241
star
18

torchtitan

A native PyTorch Library for large model training
Python
2,130
star
19

executorch

On-device AI across mobile, embedded and edge for PyTorch
C++
1,954
star
20

torchrec

Pytorch domain library for recommendation systems
Python
1,852
star
21

opacus

Training PyTorch models with differential privacy
Jupyter Notebook
1,666
star
22

tnt

A lightweight library for PyTorch training tools and utilities
Python
1,650
star
23

QNNPACK

Quantized Neural Network PACKage - mobile-optimized implementation of quantized neural network operators
C
1,519
star
24

android-demo-app

PyTorch android examples of usage in applications
Java
1,460
star
25

functorch

functorch is JAX-like composable function transforms for PyTorch.
Jupyter Notebook
1,388
star
26

hub

Submission to https://pytorch.org/hub/
Python
1,384
star
27

FBGEMM

FB (Facebook) + GEMM (General Matrix-Matrix Multiplication) - https://code.fb.com/ml-applications/fbgemm/
C++
1,156
star
28

data

A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.
Python
1,112
star
29

cpuinfo

CPU INFOrmation library (x86/x86-64/ARM/ARM64, Linux/Windows/Android/macOS/iOS)
C
989
star
30

torchdynamo

A Python-level JIT compiler designed to make unmodified PyTorch programs faster.
Python
989
star
31

extension-cpp

C++ extensions in PyTorch
Python
980
star
32

benchmark

TorchBench is a collection of open source benchmarks used to evaluate PyTorch performance.
Python
841
star
33

translate

Translate - a PyTorch Language Library
Python
820
star
34

tensordict

TensorDict is a pytorch dedicated tensor container.
Python
816
star
35

elastic

PyTorch elastic training
Python
728
star
36

PiPPy

Pipeline Parallelism for PyTorch
Python
698
star
37

kineto

A CPU+GPU Profiling library that provides access to timeline traces and hardware performance counters.
HTML
682
star
38

torcharrow

High performance model preprocessing library on PyTorch
Python
641
star
39

ao

PyTorch native quantization and sparsity for training and inference
Python
630
star
40

ios-demo-app

PyTorch iOS examples
Swift
595
star
41

tvm

TVM integration into PyTorch
C++
451
star
42

contrib

Implementations of ideas from recent papers
Python
390
star
43

builder

Continuous builder and binary build scripts for pytorch
Shell
325
star
44

torchx

TorchX is a universal job launcher for PyTorch applications. TorchX is designed to have fast iteration time for training/research and support for E2E production ML pipelines when you're ready.
Python
319
star
45

accimage

high performance image loading and augmenting routines mimicking PIL.Image interface
C
317
star
46

extension-ffi

Examples of C extensions for PyTorch
Python
257
star
47

nestedtensor

[Prototype] Tools for the concurrent manipulation of variably sized Tensors.
Jupyter Notebook
252
star
48

tensorpipe

A tensor-aware point-to-point communication primitive for machine learning
C++
247
star
49

pytorch.github.io

The website for PyTorch
HTML
222
star
50

torcheval

A library that contains a rich collection of performant PyTorch model metrics, a simple interface to create new metrics, a toolkit to facilitate metric computation in distributed training and tools for PyTorch model evaluations.
Python
210
star
51

cppdocs

PyTorch C++ API Documentation
HTML
206
star
52

workshops

This is a repository for all workshop related materials.
Jupyter Notebook
204
star
53

hydra-torch

Configuration classes enabling type-safe PyTorch configuration for Hydra apps
Python
199
star
54

multipy

torch::deploy (multipy for non-torch uses) is a system that lets you get around the GIL problem by running multiple Python interpreters in a single C++ process.
C++
169
star
55

torchsnapshot

A performant, memory-efficient checkpointing library for PyTorch applications, designed with large, complex distributed workloads in mind.
Python
142
star
56

java-demo

Jupyter Notebook
126
star
57

rfcs

PyTorch RFCs (experimental)
120
star
58

torchdistx

Torch Distributed Experimental
Python
115
star
59

extension-script

Example repository for custom C++/CUDA operators for TorchScript
Python
112
star
60

csprng

Cryptographically secure pseudorandom number generators for PyTorch
Batchfile
105
star
61

pytorch_sphinx_theme

PyTorch Sphinx Theme
CSS
94
star
62

test-infra

This repository hosts code that supports the testing infrastructure for the main PyTorch repo. For example, this repo hosts the logic to track disabled tests and slow tests, as well as our continuation integration jobs HUD/dashboard.
TypeScript
78
star
63

expecttest

Python
71
star
64

torchcodec

PyTorch video decoding
Python
46
star
65

maskedtensor

MaskedTensors for PyTorch
Python
38
star
66

add-annotations-github-action

A GitHub action to run clang-tidy and annotate failures
JavaScript
13
star
67

ci-hud

HUD for CI activity on `pytorch/pytorch`, provides a top level view for jobs to easily discern regressions
JavaScript
11
star
68

probot

PyTorch GitHub bot written in probot
TypeScript
11
star
69

ossci-job-dsl

Jenkins job definitions for OSSCI
Groovy
10
star
70

pytorch-integration-testing

Testing downstream libraries using pytorch release candidates
Makefile
6
star
71

docs

This repository is automatically generated to contain the website source for the PyTorch documentation at https//pytorch.org/docs.
HTML
4
star
72

torchhub_testing

Repo to test torchhub. Nothing to see here.
4
star
73

dr-ci

Diagnose and remediate CI jobs
Haskell
2
star
74

pytorch-ci-dockerfiles

Scripts for generating docker images for PyTorch CI
2
star
75

labeler-github-action

GitHub action for labeling issues and pull requests based on conditions
TypeScript
1
star