• Stars
    star
    989
  • Rank 46,300 (Top 1.0 %)
  • Language
    C
  • License
    BSD 2-Clause "Sim...
  • Created over 7 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

CPU INFOrmation library (x86/x86-64/ARM/ARM64, Linux/Windows/Android/macOS/iOS)

CPU INFOrmation library

BSD (2 clause) License Linux/Mac build status Windows build status

cpuinfo is a library to detect essential for performance optimization information about host CPU.

Features

  • Cross-platform availability:
    • Linux, Windows, macOS, Android, and iOS operating systems
    • x86, x86-64, ARM, and ARM64 architectures
  • Modern C/C++ interface
    • Thread-safe
    • No memory allocation after initialization
    • No exceptions thrown
  • Detection of supported instruction sets, up to AVX512 (x86) and ARMv8.3 extensions
  • Detection of SoC and core information:
    • Processor (SoC) name
    • Vendor and microarchitecture for each CPU core
    • ID (MIDR on ARM, CPUID leaf 1 EAX value on x86) for each CPU core
  • Detection of cache information:
    • Cache type (instruction/data/unified), size and line size
    • Cache associativity
    • Cores and logical processors (hyper-threads) sharing the cache
  • Detection of topology information (relative between logical processors, cores, and processor packages)
  • Well-tested production-quality code:
    • 60+ mock tests based on data from real devices
    • Includes work-arounds for common bugs in hardware and OS kernels
    • Supports systems with heterogenous cores, such as big.LITTLE and Max.Med.Min
  • Permissive open-source license (Simplified BSD)

Examples

Log processor name:

cpuinfo_initialize();
printf("Running on %s CPU\n", cpuinfo_get_package(0)->name);

Detect if target is a 32-bit or 64-bit ARM system:

#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
    /* 32-bit ARM-specific code here */
#endif

Check if the host CPU supports ARM NEON

cpuinfo_initialize();
if (cpuinfo_has_arm_neon()) {
    neon_implementation(arguments);
}

Check if the host CPU supports x86 AVX

cpuinfo_initialize();
if (cpuinfo_has_x86_avx()) {
    avx_implementation(arguments);
}

Check if the thread runs on a Cortex-A53 core

cpuinfo_initialize();
switch (cpuinfo_get_current_core()->uarch) {
    case cpuinfo_uarch_cortex_a53:
        cortex_a53_implementation(arguments);
        break;
    default:
        generic_implementation(arguments);
        break;
}

Get the size of level 1 data cache on the fastest core in the processor (e.g. big core in big.LITTLE ARM systems):

cpuinfo_initialize();
const size_t l1_size = cpuinfo_get_processor(0)->cache.l1d->size;

Pin thread to cores sharing L2 cache with the current core (Linux or Android)

cpuinfo_initialize();
cpu_set_t cpu_set;
CPU_ZERO(&cpu_set);
const struct cpuinfo_cache* current_l2 = cpuinfo_get_current_processor()->cache.l2;
for (uint32_t i = 0; i < current_l2->processor_count; i++) {
    CPU_SET(cpuinfo_get_processor(current_l2->processor_start + i)->linux_id, &cpu_set);
}
pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpu_set);

Use via pkg-config

If you would like to provide your project's build environment with the necessary compiler and linker flags in a portable manner, the library by default when built enables CPUINFO_BUILD_PKG_CONFIG and will generate a pkg-config manifest (libcpuinfo.pc). Here are several examples of how to use it:

Command Line

If you used your distro's package manager to install the library, you can verify that it is available to your build environment like so:

$ pkg-config --cflags --libs libcpuinfo
-I/usr/include/x86_64-linux-gnu/ -L/lib/x86_64-linux-gnu/ -lcpuinfo

If you have installed the library from source into a non-standard prefix, pkg-config may need help finding it:

$ PKG_CONFIG_PATH="/home/me/projects/cpuinfo/prefix/lib/pkgconfig/:$PKG_CONFIG_PATH" pkg-config --cflags --libs libcpuinfo
-I/home/me/projects/cpuinfo/prefix/include -L/home/me/projects/cpuinfo/prefix/lib -lcpuinfo

GNU Autotools

To use with the GNU Autotools include the following snippet in your project's configure.ac:

# CPU INFOrmation library...
PKG_CHECK_MODULES(
    [libcpuinfo], [libcpuinfo], [],
    [AC_MSG_ERROR([libcpuinfo missing...])])
YOURPROJECT_CXXFLAGS="$YOURPROJECT_CXXFLAGS $libcpuinfo_CFLAGS"
YOURPROJECT_LIBS="$YOURPROJECT_LIBS $libcpuinfo_LIBS"

Meson

To use with Meson you just need to add dependency('libcpuinfo') as a dependency for your executable.

project(
    'MyCpuInfoProject',
    'cpp',
    meson_version: '>=0.55.0'
)

executable(
    'MyCpuInfoExecutable',
    sources: 'main.cpp',
    dependencies: dependency('libcpuinfo')
)

Bazel

This project can be built using Bazel.

You can also use this library as a dependency to your Bazel project. Add to the WORKSPACE file:

load("@bazel_tools//tools/build_defs/repo:git.bzl", "git_repository")

git_repository(
    name = "org_pytorch_cpuinfo",
    branch = "master",
    remote = "https://github.com/Vertexwahn/cpuinfo.git",
)

And to your BUILD file:

cc_binary(
    name = "cpuinfo_test",
    srcs = [
        # ...
    ],
    deps = [
        "@org_pytorch_cpuinfo//:cpuinfo",
    ],
)

CMake

To use with CMake use the FindPkgConfig module. Here is an example:

cmake_minimum_required(VERSION 3.6)
project("MyCpuInfoProject")

find_package(PkgConfig)
pkg_check_modules(CpuInfo REQUIRED IMPORTED_TARGET libcpuinfo)

add_executable(${PROJECT_NAME} main.cpp)
target_link_libraries(${PROJECT_NAME} PkgConfig::CpuInfo)

Makefile

To use within a vanilla makefile, you can call pkg-config directly to supply compiler and linker flags using shell substitution.

CFLAGS=-g3 -Wall -Wextra -Werror ...
LDFLAGS=-lfoo ...
...
CFLAGS+= $(pkg-config --cflags libcpuinfo)
LDFLAGS+= $(pkg-config --libs libcpuinfo)

Exposed information

  • Processor (SoC) name
  • Microarchitecture
  • Usable instruction sets
  • CPU frequency
  • Cache
    • Size
    • Associativity
    • Line size
    • Number of partitions
    • Flags (unified, inclusive, complex hash function)
    • Topology (logical processors that share this cache level)
  • TLB
    • Number of entries
    • Associativity
    • Covered page types (instruction, data)
    • Covered page sizes
  • Topology information
    • Logical processors
    • Cores
    • Packages (sockets)

Supported environments:

  • Android
    • x86 ABI
    • x86_64 ABI
    • armeabi ABI
    • armeabiv7-a ABI
    • arm64-v8a ABI
    • mips ABI
    • mips64 ABI
  • Linux
    • x86
    • x86-64
    • 32-bit ARM (ARMv5T and later)
    • ARM64
    • PowerPC64
  • iOS
    • x86 (iPhone simulator)
    • x86-64 (iPhone simulator)
    • ARMv7
    • ARM64
  • macOS
    • x86
    • x86-64
    • ARM64 (Apple silicon)
  • Windows
    • x86
    • x86-64
    • arm64

Methods

  • Processor (SoC) name detection
    • Using CPUID leaves 0x80000002–0x80000004 on x86/x86-64
    • Using /proc/cpuinfo on ARM
    • Using ro.chipname, ro.board.platform, ro.product.board, ro.mediatek.platform, ro.arch properties (Android)
    • Using kernel log (dmesg) on ARM Linux
    • Using Windows registry on ARM64 Windows
  • Vendor and microarchitecture detection
    • Intel-designed x86/x86-64 cores (up to Sunny Cove, Goldmont Plus, and Knights Mill)
    • AMD-designed x86/x86-64 cores (up to Puma/Jaguar and Zen 2)
    • VIA-designed x86/x86-64 cores
    • Other x86 cores (DM&P, RDC, Transmeta, Cyrix, Rise)
    • ARM-designed ARM cores (up to Cortex-A55, Cortex-A77, and Neoverse E1/N1/V1/N2)
    • Qualcomm-designed ARM cores (Scorpion, Krait, and Kryo)
    • Nvidia-designed ARM cores (Denver and Carmel)
    • Samsung-designed ARM cores (Exynos)
    • Intel-designed ARM cores (XScale up to 3rd-gen)
    • Apple-designed ARM cores (up to Lightning and Thunder)
    • Cavium-designed ARM cores (ThunderX)
    • AppliedMicro-designed ARM cores (X-Gene)
  • Instruction set detection
    • Using CPUID (x86/x86-64)
    • Using /proc/cpuinfo on 32-bit ARM EABI (Linux)
    • Using microarchitecture heuristics on (32-bit ARM)
    • Using FPSID and WCID registers (32-bit ARM)
    • Using getauxval (Linux/ARM)
    • Using /proc/self/auxv (Android/ARM)
    • Using instruction probing on ARM (Linux)
    • Using CPUID registers on ARM64 (Linux)
    • Using IsProcessorFeaturePresent on ARM64 Windows
  • Cache detection
    • Using CPUID leaf 0x00000002 (x86/x86-64)
    • Using CPUID leaf 0x00000004 (non-AMD x86/x86-64)
    • Using CPUID leaves 0x80000005-0x80000006 (AMD x86/x86-64)
    • Using CPUID leaf 0x8000001D (AMD x86/x86-64)
    • Using /proc/cpuinfo (Linux/pre-ARMv7)
    • Using microarchitecture heuristics (ARM)
    • Using chipset name (ARM)
    • Using sysctlbyname (Mach)
    • Using sysfs typology directories (ARM/Linux)
    • Using sysfs cache directories (Linux)
    • Using GetLogicalProcessorInformationEx on ARM64 Windows
  • TLB detection
    • Using CPUID leaf 0x00000002 (x86/x86-64)
    • Using CPUID leaves 0x80000005-0x80000006 and 0x80000019 (AMD x86/x86-64)
    • Using microarchitecture heuristics (ARM)
  • Topology detection
    • Using CPUID leaf 0x00000001 on x86/x86-64 (legacy APIC ID)
    • Using CPUID leaf 0x0000000B on x86/x86-64 (Intel APIC ID)
    • Using CPUID leaf 0x8000001E on x86/x86-64 (AMD APIC ID)
    • Using /proc/cpuinfo (Linux)
    • Using host_info (Mach)
    • Using GetLogicalProcessorInformationEx (Windows)
    • Using sysfs (Linux)
    • Using chipset name (ARM/Linux)

More Repositories

1

pytorch

Tensors and Dynamic neural networks in Python with strong GPU acceleration
Python
83,553
star
2

examples

A set of examples around pytorch in Vision, Text, Reinforcement Learning, etc.
Python
22,311
star
3

vision

Datasets, Transforms and Models specific to Computer Vision
Python
15,925
star
4

tutorials

PyTorch tutorials.
Jupyter Notebook
8,075
star
5

captum

Model interpretability and understanding for PyTorch
Python
4,781
star
6

ignite

High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.
Python
4,507
star
7

serve

Serve, optimize and scale PyTorch models in production
Java
4,190
star
8

torchtune

PyTorch native finetuning library
Python
4,163
star
9

text

Models, data loaders and abstractions for language processing, powered by PyTorch
Python
3,490
star
10

ELF

ELF: a platform for game research with AlphaGoZero/AlphaZero reimplementation
C++
3,364
star
11

glow

Compiler for Neural Network hardware accelerators
C++
3,197
star
12

botorch

Bayesian optimization in PyTorch
Jupyter Notebook
3,043
star
13

torchchat

Run PyTorch LLMs locally on servers, desktop and mobile
Python
3,040
star
14

TensorRT

PyTorch/TorchScript/FX compiler for NVIDIA GPUs using TensorRT
Python
2,565
star
15

audio

Data manipulation and transformation for audio signal processing, powered by PyTorch
Python
2,471
star
16

xla

Enabling PyTorch on XLA Devices (e.g. Google TPU)
C++
2,469
star
17

rl

A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.
Python
2,241
star
18

torchtitan

A native PyTorch Library for large model training
Python
2,130
star
19

executorch

On-device AI across mobile, embedded and edge for PyTorch
C++
1,954
star
20

torchrec

Pytorch domain library for recommendation systems
Python
1,852
star
21

opacus

Training PyTorch models with differential privacy
Jupyter Notebook
1,666
star
22

tnt

A lightweight library for PyTorch training tools and utilities
Python
1,650
star
23

QNNPACK

Quantized Neural Network PACKage - mobile-optimized implementation of quantized neural network operators
C
1,519
star
24

android-demo-app

PyTorch android examples of usage in applications
Java
1,460
star
25

functorch

functorch is JAX-like composable function transforms for PyTorch.
Jupyter Notebook
1,388
star
26

hub

Submission to https://pytorch.org/hub/
Python
1,384
star
27

FBGEMM

FB (Facebook) + GEMM (General Matrix-Matrix Multiplication) - https://code.fb.com/ml-applications/fbgemm/
C++
1,156
star
28

data

A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.
Python
1,112
star
29

torchdynamo

A Python-level JIT compiler designed to make unmodified PyTorch programs faster.
Python
989
star
30

extension-cpp

C++ extensions in PyTorch
Python
980
star
31

benchmark

TorchBench is a collection of open source benchmarks used to evaluate PyTorch performance.
Python
841
star
32

translate

Translate - a PyTorch Language Library
Python
820
star
33

tensordict

TensorDict is a pytorch dedicated tensor container.
Python
816
star
34

elastic

PyTorch elastic training
Python
728
star
35

PiPPy

Pipeline Parallelism for PyTorch
Python
698
star
36

kineto

A CPU+GPU Profiling library that provides access to timeline traces and hardware performance counters.
HTML
682
star
37

torcharrow

High performance model preprocessing library on PyTorch
Python
641
star
38

ao

PyTorch native quantization and sparsity for training and inference
Python
630
star
39

ios-demo-app

PyTorch iOS examples
Swift
595
star
40

tvm

TVM integration into PyTorch
C++
451
star
41

contrib

Implementations of ideas from recent papers
Python
390
star
42

ort

Accelerate PyTorch models with ONNX Runtime
Python
353
star
43

builder

Continuous builder and binary build scripts for pytorch
Shell
325
star
44

torchx

TorchX is a universal job launcher for PyTorch applications. TorchX is designed to have fast iteration time for training/research and support for E2E production ML pipelines when you're ready.
Python
319
star
45

accimage

high performance image loading and augmenting routines mimicking PIL.Image interface
C
317
star
46

extension-ffi

Examples of C extensions for PyTorch
Python
257
star
47

nestedtensor

[Prototype] Tools for the concurrent manipulation of variably sized Tensors.
Jupyter Notebook
252
star
48

tensorpipe

A tensor-aware point-to-point communication primitive for machine learning
C++
247
star
49

pytorch.github.io

The website for PyTorch
HTML
222
star
50

torcheval

A library that contains a rich collection of performant PyTorch model metrics, a simple interface to create new metrics, a toolkit to facilitate metric computation in distributed training and tools for PyTorch model evaluations.
Python
210
star
51

cppdocs

PyTorch C++ API Documentation
HTML
206
star
52

workshops

This is a repository for all workshop related materials.
Jupyter Notebook
204
star
53

hydra-torch

Configuration classes enabling type-safe PyTorch configuration for Hydra apps
Python
199
star
54

multipy

torch::deploy (multipy for non-torch uses) is a system that lets you get around the GIL problem by running multiple Python interpreters in a single C++ process.
C++
169
star
55

torchsnapshot

A performant, memory-efficient checkpointing library for PyTorch applications, designed with large, complex distributed workloads in mind.
Python
142
star
56

java-demo

Jupyter Notebook
126
star
57

rfcs

PyTorch RFCs (experimental)
120
star
58

torchdistx

Torch Distributed Experimental
Python
115
star
59

extension-script

Example repository for custom C++/CUDA operators for TorchScript
Python
112
star
60

csprng

Cryptographically secure pseudorandom number generators for PyTorch
Batchfile
105
star
61

pytorch_sphinx_theme

PyTorch Sphinx Theme
CSS
94
star
62

test-infra

This repository hosts code that supports the testing infrastructure for the main PyTorch repo. For example, this repo hosts the logic to track disabled tests and slow tests, as well as our continuation integration jobs HUD/dashboard.
TypeScript
78
star
63

expecttest

Python
71
star
64

torchcodec

PyTorch video decoding
Python
46
star
65

maskedtensor

MaskedTensors for PyTorch
Python
38
star
66

add-annotations-github-action

A GitHub action to run clang-tidy and annotate failures
JavaScript
13
star
67

ci-hud

HUD for CI activity on `pytorch/pytorch`, provides a top level view for jobs to easily discern regressions
JavaScript
11
star
68

probot

PyTorch GitHub bot written in probot
TypeScript
11
star
69

ossci-job-dsl

Jenkins job definitions for OSSCI
Groovy
10
star
70

pytorch-integration-testing

Testing downstream libraries using pytorch release candidates
Makefile
6
star
71

docs

This repository is automatically generated to contain the website source for the PyTorch documentation at https//pytorch.org/docs.
HTML
4
star
72

torchhub_testing

Repo to test torchhub. Nothing to see here.
4
star
73

dr-ci

Diagnose and remediate CI jobs
Haskell
2
star
74

pytorch-ci-dockerfiles

Scripts for generating docker images for PyTorch CI
2
star
75

labeler-github-action

GitHub action for labeling issues and pull requests based on conditions
TypeScript
1
star