• Stars
    star
    15,925
  • Rank 1,806 (Top 0.04 %)
  • Language
    Python
  • License
    BSD 3-Clause "New...
  • Created almost 8 years ago
  • Updated 2 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Datasets, Transforms and Models specific to Computer Vision

torchvision

total torchvision downloads documentation

The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.

Installation

We recommend Anaconda as Python package management system. Please refer to pytorch.org for the detail of PyTorch (torch) installation. The following is the corresponding torchvision versions and supported Python versions.

torch torchvision Python
main / nightly main / nightly >=3.8, <=3.11
2.0 0.15 >=3.8, <=3.11
1.13 0.14 >=3.7.2, <=3.10
1.12 0.13 >=3.7, <=3.10
older versions
torch torchvision Python
1.11 0.12 >=3.7, <=3.10
1.10 0.11 >=3.6, <=3.9
1.9 0.10 >=3.6, <=3.9
1.8 0.9 >=3.6, <=3.9
1.7 0.8 >=3.6, <=3.9
1.6 0.7 >=3.6, <=3.8
1.5 0.6 >=3.5, <=3.8
1.4 0.5 ==2.7, >=3.5, <=3.8
1.3 0.4.2 / 0.4.3 ==2.7, >=3.5, <=3.7
1.2 0.4.1 ==2.7, >=3.5, <=3.7
1.1 0.3 ==2.7, >=3.5, <=3.7
<=1.0 0.2 ==2.7, >=3.5, <=3.7

Anaconda:

conda install torchvision -c pytorch

pip:

pip install torchvision

From source:

python setup.py install
# or, for OSX
# MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py install

We don't officially support building from source using pip, but if you do, you'll need to use the --no-build-isolation flag. In case building TorchVision from source fails, install the nightly version of PyTorch following the linked guide on the contributing page and retry the install.

By default, GPU support is built if CUDA is found and torch.cuda.is_available() is true. It's possible to force building GPU support by setting FORCE_CUDA=1 environment variable, which is useful when building a docker image.

Image Backend

Torchvision currently supports the following image backends:

  • Pillow (default)
  • Pillow-SIMD - a much faster drop-in replacement for Pillow with SIMD. If installed will be used as the default.
  • accimage - if installed can be activated by calling torchvision.set_image_backend('accimage')
  • libpng - can be installed via conda conda install libpng or any of the package managers for debian-based and RHEL-based Linux distributions.
  • libjpeg - can be installed via conda conda install jpeg or any of the package managers for debian-based and RHEL-based Linux distributions. libjpeg-turbo can be used as well.

Notes: libpng and libjpeg must be available at compilation time in order to be available. Make sure that it is available on the standard library locations, otherwise, add the include and library paths in the environment variables TORCHVISION_INCLUDE and TORCHVISION_LIBRARY, respectively.

Video Backend

Torchvision currently supports the following video backends:

  • pyav (default) - Pythonic binding for ffmpeg libraries.
  • video_reader - This needs ffmpeg to be installed and torchvision to be built from source. There shouldn't be any conflicting version of ffmpeg installed. Currently, this is only supported on Linux.
conda install -c conda-forge ffmpeg
python setup.py install

Using the models on C++

TorchVision provides an example project for how to use the models on C++ using JIT Script.

Installation From source:

mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install

Once installed, the library can be accessed in cmake (after properly configuring CMAKE_PREFIX_PATH) via the TorchVision::TorchVision target:

find_package(TorchVision REQUIRED)
target_link_libraries(my-target PUBLIC TorchVision::TorchVision)

The TorchVision package will also automatically look for the Torch package and add it as a dependency to my-target, so make sure that it is also available to cmake via the CMAKE_PREFIX_PATH.

For an example setup, take a look at examples/cpp/hello_world.

Python linking is disabled by default when compiling TorchVision with CMake, this allows you to run models without any Python dependency. In some special cases where TorchVision's operators are used from Python code, you may need to link to Python. This can be done by passing -DUSE_PYTHON=on to CMake.

TorchVision Operators

In order to get the torchvision operators registered with torch (eg. for the JIT), all you need to do is to ensure that you #include <torchvision/vision.h> in your project.

Documentation

You can find the API documentation on the pytorch website: https://pytorch.org/vision/stable/index.html

Contributing

See the CONTRIBUTING file for how to help out.

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

More specifically, SWAG models are released under the CC-BY-NC 4.0 license. See SWAG LICENSE for additional details.

Citing TorchVision

If you find TorchVision useful in your work, please consider citing the following BibTeX entry:

@software{torchvision2016,
    title        = {TorchVision: PyTorch's Computer Vision library},
    author       = {TorchVision maintainers and contributors},
    year         = 2016,
    journal      = {GitHub repository},
    publisher    = {GitHub},
    howpublished = {\url{https://github.com/pytorch/vision}}
}

More Repositories

1

pytorch

Tensors and Dynamic neural networks in Python with strong GPU acceleration
Python
83,553
star
2

examples

A set of examples around pytorch in Vision, Text, Reinforcement Learning, etc.
Python
22,311
star
3

tutorials

PyTorch tutorials.
Jupyter Notebook
8,075
star
4

captum

Model interpretability and understanding for PyTorch
Python
4,781
star
5

ignite

High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.
Python
4,507
star
6

serve

Serve, optimize and scale PyTorch models in production
Java
4,190
star
7

torchtune

PyTorch native finetuning library
Python
4,163
star
8

text

Models, data loaders and abstractions for language processing, powered by PyTorch
Python
3,490
star
9

ELF

ELF: a platform for game research with AlphaGoZero/AlphaZero reimplementation
C++
3,364
star
10

glow

Compiler for Neural Network hardware accelerators
C++
3,197
star
11

botorch

Bayesian optimization in PyTorch
Jupyter Notebook
3,043
star
12

torchchat

Run PyTorch LLMs locally on servers, desktop and mobile
Python
3,040
star
13

TensorRT

PyTorch/TorchScript/FX compiler for NVIDIA GPUs using TensorRT
Python
2,565
star
14

audio

Data manipulation and transformation for audio signal processing, powered by PyTorch
Python
2,471
star
15

xla

Enabling PyTorch on XLA Devices (e.g. Google TPU)
C++
2,469
star
16

rl

A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.
Python
2,241
star
17

torchtitan

A native PyTorch Library for large model training
Python
2,130
star
18

executorch

On-device AI across mobile, embedded and edge for PyTorch
C++
1,954
star
19

torchrec

Pytorch domain library for recommendation systems
Python
1,852
star
20

opacus

Training PyTorch models with differential privacy
Jupyter Notebook
1,666
star
21

tnt

A lightweight library for PyTorch training tools and utilities
Python
1,650
star
22

QNNPACK

Quantized Neural Network PACKage - mobile-optimized implementation of quantized neural network operators
C
1,519
star
23

android-demo-app

PyTorch android examples of usage in applications
Java
1,460
star
24

functorch

functorch is JAX-like composable function transforms for PyTorch.
Jupyter Notebook
1,388
star
25

hub

Submission to https://pytorch.org/hub/
Python
1,384
star
26

FBGEMM

FB (Facebook) + GEMM (General Matrix-Matrix Multiplication) - https://code.fb.com/ml-applications/fbgemm/
C++
1,156
star
27

data

A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.
Python
1,112
star
28

cpuinfo

CPU INFOrmation library (x86/x86-64/ARM/ARM64, Linux/Windows/Android/macOS/iOS)
C
989
star
29

torchdynamo

A Python-level JIT compiler designed to make unmodified PyTorch programs faster.
Python
989
star
30

extension-cpp

C++ extensions in PyTorch
Python
980
star
31

benchmark

TorchBench is a collection of open source benchmarks used to evaluate PyTorch performance.
Python
841
star
32

translate

Translate - a PyTorch Language Library
Python
820
star
33

tensordict

TensorDict is a pytorch dedicated tensor container.
Python
816
star
34

elastic

PyTorch elastic training
Python
728
star
35

PiPPy

Pipeline Parallelism for PyTorch
Python
698
star
36

kineto

A CPU+GPU Profiling library that provides access to timeline traces and hardware performance counters.
HTML
682
star
37

torcharrow

High performance model preprocessing library on PyTorch
Python
641
star
38

ao

PyTorch native quantization and sparsity for training and inference
Python
630
star
39

ios-demo-app

PyTorch iOS examples
Swift
595
star
40

tvm

TVM integration into PyTorch
C++
451
star
41

contrib

Implementations of ideas from recent papers
Python
390
star
42

ort

Accelerate PyTorch models with ONNX Runtime
Python
353
star
43

builder

Continuous builder and binary build scripts for pytorch
Shell
325
star
44

torchx

TorchX is a universal job launcher for PyTorch applications. TorchX is designed to have fast iteration time for training/research and support for E2E production ML pipelines when you're ready.
Python
319
star
45

accimage

high performance image loading and augmenting routines mimicking PIL.Image interface
C
317
star
46

extension-ffi

Examples of C extensions for PyTorch
Python
257
star
47

nestedtensor

[Prototype] Tools for the concurrent manipulation of variably sized Tensors.
Jupyter Notebook
252
star
48

tensorpipe

A tensor-aware point-to-point communication primitive for machine learning
C++
247
star
49

pytorch.github.io

The website for PyTorch
HTML
222
star
50

torcheval

A library that contains a rich collection of performant PyTorch model metrics, a simple interface to create new metrics, a toolkit to facilitate metric computation in distributed training and tools for PyTorch model evaluations.
Python
210
star
51

cppdocs

PyTorch C++ API Documentation
HTML
206
star
52

workshops

This is a repository for all workshop related materials.
Jupyter Notebook
204
star
53

hydra-torch

Configuration classes enabling type-safe PyTorch configuration for Hydra apps
Python
199
star
54

multipy

torch::deploy (multipy for non-torch uses) is a system that lets you get around the GIL problem by running multiple Python interpreters in a single C++ process.
C++
169
star
55

torchsnapshot

A performant, memory-efficient checkpointing library for PyTorch applications, designed with large, complex distributed workloads in mind.
Python
142
star
56

java-demo

Jupyter Notebook
126
star
57

rfcs

PyTorch RFCs (experimental)
120
star
58

torchdistx

Torch Distributed Experimental
Python
115
star
59

extension-script

Example repository for custom C++/CUDA operators for TorchScript
Python
112
star
60

csprng

Cryptographically secure pseudorandom number generators for PyTorch
Batchfile
105
star
61

pytorch_sphinx_theme

PyTorch Sphinx Theme
CSS
94
star
62

test-infra

This repository hosts code that supports the testing infrastructure for the main PyTorch repo. For example, this repo hosts the logic to track disabled tests and slow tests, as well as our continuation integration jobs HUD/dashboard.
TypeScript
78
star
63

expecttest

Python
71
star
64

torchcodec

PyTorch video decoding
Python
46
star
65

maskedtensor

MaskedTensors for PyTorch
Python
38
star
66

add-annotations-github-action

A GitHub action to run clang-tidy and annotate failures
JavaScript
13
star
67

ci-hud

HUD for CI activity on `pytorch/pytorch`, provides a top level view for jobs to easily discern regressions
JavaScript
11
star
68

probot

PyTorch GitHub bot written in probot
TypeScript
11
star
69

ossci-job-dsl

Jenkins job definitions for OSSCI
Groovy
10
star
70

pytorch-integration-testing

Testing downstream libraries using pytorch release candidates
Makefile
6
star
71

docs

This repository is automatically generated to contain the website source for the PyTorch documentation at https//pytorch.org/docs.
HTML
4
star
72

torchhub_testing

Repo to test torchhub. Nothing to see here.
4
star
73

dr-ci

Diagnose and remediate CI jobs
Haskell
2
star
74

pytorch-ci-dockerfiles

Scripts for generating docker images for PyTorch CI
2
star
75

labeler-github-action

GitHub action for labeling issues and pull requests based on conditions
TypeScript
1
star