• Stars
    star
    2,565
  • Rank 17,878 (Top 0.4 %)
  • Language
    Python
  • License
    BSD 3-Clause "New...
  • Created over 4 years ago
  • Updated about 1 month ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

PyTorch/TorchScript/FX compiler for NVIDIA GPUs using TensorRT

Torch-TensorRT

Documentation CircleCI

Ahead of Time (AOT) compiling for PyTorch JIT and FX

Torch-TensorRT is a compiler for PyTorch/TorchScript/FX, targeting NVIDIA GPUs via NVIDIA's TensorRT Deep Learning Optimizer and Runtime. Unlike PyTorch's Just-In-Time (JIT) compiler, Torch-TensorRT is an Ahead-of-Time (AOT) compiler, meaning that before you deploy your TorchScript code, you go through an explicit compile step to convert a standard TorchScript or FX program into an module targeting a TensorRT engine. Torch-TensorRT operates as a PyTorch extention and compiles modules that integrate into the JIT runtime seamlessly. After compilation using the optimized graph should feel no different than running a TorchScript module. You also have access to TensorRT's suite of configurations at compile time, so you are able to specify operating precision (FP32/FP16/INT8) and other settings for your module.

Resources:

NVIDIA NGC Container

Torch-TensorRT is distributed in the ready-to-run NVIDIA NGC PyTorch Container starting with 21.11. We recommend using this prebuilt container to experiment & develop with Torch-TensorRT; it has all dependencies with the proper versions as well as example notebooks included.

Building a docker container for Torch-TensorRT

We provide a Dockerfile in docker/ directory. It expects a PyTorch NGC container as a base but can easily be modified to build on top of any container that provides, PyTorch, CUDA, cuDNN and TensorRT. The dependency libraries in the container can be found in the release notes.

Please follow this instruction to build a Docker container.

docker build --build-arg BASE=<CONTAINER VERSION e.g. 21.11> -f docker/Dockerfile -t torch_tensorrt:latest .

In the case of building on top of a custom base container, you first must determine the version of the PyTorch C++ ABI. If your source of PyTorch is pytorch.org, likely this is the pre-cxx11-abi in which case you must modify //docker/dist-build.sh to not build the C++11 ABI version of Torch-TensorRT.

You can then build the container using the build command in the docker README

If you would like to build outside a docker container, please follow the section Compiling Torch-TensorRT

Example Usage

C++

#include "torch/script.h"
#include "torch_tensorrt/torch_tensorrt.h"

...
// Set input datatypes. Allowerd options torch::{kFloat, kHalf, kChar, kInt32, kBool}
// Size of input_dtypes should match number of inputs to the network.
// If input_dtypes is not set, default precision follows traditional PyT / TRT rules
auto input = torch_tensorrt::Input(dims, torch::kHalf);
auto compile_settings = torch_tensorrt::ts::CompileSpec({input});
// FP16 execution
compile_settings.enabled_precisions = {torch::kHalf};
// Compile module
auto trt_mod = torch_tensorrt::ts::compile(ts_mod, compile_settings);
// Run like normal
auto results = trt_mod.forward({in_tensor});
// Save module for later
trt_mod.save("trt_torchscript_module.ts");
...

Python

import torch_tensorrt

...

trt_ts_module = torch_tensorrt.compile(torch_script_module,
    # If the inputs to the module are plain Tensors, specify them via the `inputs` argument:
    inputs = [example_tensor, # Provide example tensor for input shape or...
        torch_tensorrt.Input( # Specify input object with shape and dtype
            min_shape=[1, 3, 224, 224],
            opt_shape=[1, 3, 512, 512],
            max_shape=[1, 3, 1024, 1024],
            # For static size shape=[1, 3, 224, 224]
            dtype=torch.half) # Datatype of input tensor. Allowed options torch.(float|half|int8|int32|bool)
    ],

    # For inputs containing tuples or lists of tensors, use the `input_signature` argument:
    # Below, we have an input consisting of a Tuple of two Tensors (Tuple[Tensor, Tensor])
    # input_signature = ( (torch_tensorrt.Input(shape=[1, 3, 224, 224], dtype=torch.half),
    #                      torch_tensorrt.Input(shape=[1, 3, 224, 224], dtype=torch.half)), ),

    enabled_precisions = {torch.half}, # Run with FP16
)

result = trt_ts_module(input_data) # run inference
torch.jit.save(trt_ts_module, "trt_torchscript_module.ts") # save the TRT embedded Torchscript

Notes on running in lower precisions:

  • Enabled lower precisions with compile_spec.enabled_precisions
  • The module should be left in FP32 before compilation (FP16 can support half tensor models)
  • Provided input tensors dtype should be the same as module before compilation, regardless of enabled_precisions. This can be overrided by setting Input::dtype

Platform Support

Platform Support
Linux AMD64 / GPU Supported
Linux aarch64 / GPU Native Compilation Supported on JetPack-4.4+ (use v1.0.0 for the time being)
Linux aarch64 / DLA Native Compilation Supported on JetPack-4.4+ (use v1.0.0 for the time being)
Windows / GPU Unofficial Support
Linux ppc64le / GPU -
NGC Containers Included in PyTorch NGC Containers 21.11+

Torch-TensorRT will be included in NVIDIA NGC containers (https://ngc.nvidia.com/catalog/containers/nvidia:pytorch) starting in 21.11.

Note: Refer NVIDIA NGC container(https://ngc.nvidia.com/catalog/containers/nvidia:l4t-pytorch) for PyTorch libraries on JetPack.

Dependencies

These are the following dependencies used to verify the testcases. Torch-TensorRT can work with other versions, but the tests are not guaranteed to pass.

  • Bazel 5.2.0
  • Libtorch 2.1.0.dev20230703 (built with CUDA 12.1)
  • CUDA 12.1
  • cuDNN 8.8.1
  • TensorRT 8.6.1

Prebuilt Binaries and Wheel files

Releases: https://github.com/pytorch/TensorRT/releases

pip install torch-tensorrt

Compiling Torch-TensorRT

Installing Dependencies

0. Install Bazel

If you don't have bazel installed, the easiest way is to install bazelisk using the method of you choosing https://github.com/bazelbuild/bazelisk

Otherwise you can use the following instructions to install binaries https://docs.bazel.build/versions/master/install.html

Finally if you need to compile from source (e.g. aarch64 until bazel distributes binaries for the architecture) you can use these instructions

export BAZEL_VERSION=<VERSION>
mkdir bazel
cd bazel
curl -fSsL -O https://github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/bazel-$BAZEL_VERSION-dist.zip
unzip bazel-$BAZEL_VERSION-dist.zip
bash ./compile.sh

You need to start by having CUDA installed on the system, LibTorch will automatically be pulled for you by bazel, then you have two options.

1. Building using cuDNN & TensorRT tarball distributions

This is recommended so as to build Torch-TensorRT hermetically and insures any bugs are not caused by version issues

Make sure when running Torch-TensorRT that these versions of the libraries are prioritized in your $LD_LIBRARY_PATH

  1. You need to download the tarball distributions of TensorRT and cuDNN from the NVIDIA website.
  2. Place these files in a directory (the directories third_party/dist_dir/[x86_64-linux-gnu | aarch64-linux-gnu] exist for this purpose)
  3. Compile using:
bazel build //:libtorchtrt --compilation_mode opt --distdir third_party/dist_dir/[x86_64-linux-gnu | aarch64-linux-gnu]

2. Building using locally installed cuDNN & TensorRT

If you find bugs and you compiled using this method please disclose you used this method in the issue (an ldd dump would be nice too)

  1. Install TensorRT, CUDA and cuDNN on the system before starting to compile.
  2. In WORKSPACE comment out
# Downloaded distributions to use with --distdir
http_archive(
    name = "cudnn",
    urls = ["<URL>",],

    build_file = "@//third_party/cudnn/archive:BUILD",
    sha256 = "<TAR SHA256>",
    strip_prefix = "cuda"
)

http_archive(
    name = "tensorrt",
    urls = ["<URL>",],

    build_file = "@//third_party/tensorrt/archive:BUILD",
    sha256 = "<TAR SHA256>",
    strip_prefix = "TensorRT-<VERSION>"
)

and uncomment

# Locally installed dependencies
new_local_repository(
    name = "cudnn",
    path = "/usr/",
    build_file = "@//third_party/cudnn/local:BUILD"
)

new_local_repository(
   name = "tensorrt",
   path = "/usr/",
   build_file = "@//third_party/tensorrt/local:BUILD"
)
  1. Compile using:
bazel build //:libtorchtrt --compilation_mode opt

FX path (Python only) installation

If the user plans to try FX path (Python only) and would like to avoid bazel build. Please follow the steps below.

cd py && python3 setup.py install --fx-only

Debug build

bazel build //:libtorchtrt --compilation_mode=dbg

Native compilation on NVIDIA Jetson AGX

We performed end to end testing on Jetson platform using Jetpack SDK 4.6.

bazel build //:libtorchtrt --platforms //toolchains:jetpack_4.6

Note: Please refer installation instructions for Pre-requisites

A tarball with the include files and library can then be found in bazel-bin

Running Torch-TensorRT on a JIT Graph

Make sure to add LibTorch to your LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$(pwd)/bazel-TensorRT/external/libtorch/lib

bazel run //cpp/bin/torchtrtc -- $(realpath <PATH TO GRAPH>) out.ts <input-size>

Compiling the Python Package

To compile the python package for your local machine, just run python3 setup.py install in the //py directory. To build wheel files for different python versions, first build the Dockerfile in //py then run the following command

docker run -it -v$(pwd)/..:/workspace/Torch-TensorRT build_torch_tensorrt_wheel /bin/bash /workspace/Torch-TensorRT/py/build_whl.sh

Python compilation expects using the tarball based compilation strategy from above.

Testing using Python backend

Torch-TensorRT supports testing in Python using nox

To install the nox using python-pip

python3 -m pip install --upgrade nox

To list supported nox sessions:

nox --session -l

Environment variables supported by nox

PYT_PATH          - To use different PYTHONPATH than system installed Python packages
TOP_DIR           - To set the root directory of the noxfile
USE_CXX11         - To use cxx11_abi (Defaults to 0)
USE_HOST_DEPS     - To use host dependencies for tests (Defaults to 0)

Usage example

nox --session l0_api_tests

Supported Python versions:

["3.7", "3.8", "3.9", "3.10"]

How do I add support for a new op...

In Torch-TensorRT?

Thanks for wanting to contribute! There are two main ways to handle supporting a new op. Either you can write a converter for the op from scratch and register it in the NodeConverterRegistry or if you can map the op to a set of ops that already have converters you can write a graph rewrite pass which will replace your new op with an equivalent subgraph of supported ops. Its preferred to use graph rewriting because then we do not need to maintain a large library of op converters. Also do look at the various op support trackers in the issues for information on the support status of various operators.

In my application?

The Node Converter Registry is not exposed in the top level API but in the internal headers shipped with the tarball.

You can register a converter for your op using the NodeConverterRegistry inside your application.

Structure of the repo

Component Description
core Main JIT ingest, lowering, conversion and runtime implementations
cpp C++ API and CLI source
examples Example applications to show different features of Torch-TensorRT
py Python API for Torch-TensorRT
tests Unit tests for Torch-TensorRT

Contributing

Take a look at the CONTRIBUTING.md

License

The Torch-TensorRT license can be found in the LICENSE file. It is licensed with a BSD Style licence

More Repositories

1

pytorch

Tensors and Dynamic neural networks in Python with strong GPU acceleration
Python
83,553
star
2

examples

A set of examples around pytorch in Vision, Text, Reinforcement Learning, etc.
Python
22,311
star
3

vision

Datasets, Transforms and Models specific to Computer Vision
Python
15,925
star
4

tutorials

PyTorch tutorials.
Jupyter Notebook
8,075
star
5

captum

Model interpretability and understanding for PyTorch
Python
4,781
star
6

ignite

High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.
Python
4,507
star
7

serve

Serve, optimize and scale PyTorch models in production
Java
4,190
star
8

torchtune

PyTorch native finetuning library
Python
4,163
star
9

text

Models, data loaders and abstractions for language processing, powered by PyTorch
Python
3,490
star
10

ELF

ELF: a platform for game research with AlphaGoZero/AlphaZero reimplementation
C++
3,364
star
11

glow

Compiler for Neural Network hardware accelerators
C++
3,197
star
12

botorch

Bayesian optimization in PyTorch
Jupyter Notebook
3,043
star
13

torchchat

Run PyTorch LLMs locally on servers, desktop and mobile
Python
3,040
star
14

audio

Data manipulation and transformation for audio signal processing, powered by PyTorch
Python
2,471
star
15

xla

Enabling PyTorch on XLA Devices (e.g. Google TPU)
C++
2,469
star
16

rl

A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.
Python
2,241
star
17

torchtitan

A native PyTorch Library for large model training
Python
2,130
star
18

executorch

On-device AI across mobile, embedded and edge for PyTorch
C++
1,954
star
19

torchrec

Pytorch domain library for recommendation systems
Python
1,852
star
20

opacus

Training PyTorch models with differential privacy
Jupyter Notebook
1,666
star
21

tnt

A lightweight library for PyTorch training tools and utilities
Python
1,650
star
22

QNNPACK

Quantized Neural Network PACKage - mobile-optimized implementation of quantized neural network operators
C
1,519
star
23

android-demo-app

PyTorch android examples of usage in applications
Java
1,460
star
24

functorch

functorch is JAX-like composable function transforms for PyTorch.
Jupyter Notebook
1,388
star
25

hub

Submission to https://pytorch.org/hub/
Python
1,384
star
26

FBGEMM

FB (Facebook) + GEMM (General Matrix-Matrix Multiplication) - https://code.fb.com/ml-applications/fbgemm/
C++
1,156
star
27

data

A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.
Python
1,112
star
28

cpuinfo

CPU INFOrmation library (x86/x86-64/ARM/ARM64, Linux/Windows/Android/macOS/iOS)
C
989
star
29

torchdynamo

A Python-level JIT compiler designed to make unmodified PyTorch programs faster.
Python
989
star
30

extension-cpp

C++ extensions in PyTorch
Python
980
star
31

benchmark

TorchBench is a collection of open source benchmarks used to evaluate PyTorch performance.
Python
841
star
32

translate

Translate - a PyTorch Language Library
Python
820
star
33

tensordict

TensorDict is a pytorch dedicated tensor container.
Python
816
star
34

elastic

PyTorch elastic training
Python
728
star
35

PiPPy

Pipeline Parallelism for PyTorch
Python
698
star
36

kineto

A CPU+GPU Profiling library that provides access to timeline traces and hardware performance counters.
HTML
682
star
37

torcharrow

High performance model preprocessing library on PyTorch
Python
641
star
38

ao

PyTorch native quantization and sparsity for training and inference
Python
630
star
39

ios-demo-app

PyTorch iOS examples
Swift
595
star
40

tvm

TVM integration into PyTorch
C++
451
star
41

contrib

Implementations of ideas from recent papers
Python
390
star
42

ort

Accelerate PyTorch models with ONNX Runtime
Python
353
star
43

builder

Continuous builder and binary build scripts for pytorch
Shell
325
star
44

torchx

TorchX is a universal job launcher for PyTorch applications. TorchX is designed to have fast iteration time for training/research and support for E2E production ML pipelines when you're ready.
Python
319
star
45

accimage

high performance image loading and augmenting routines mimicking PIL.Image interface
C
317
star
46

extension-ffi

Examples of C extensions for PyTorch
Python
257
star
47

nestedtensor

[Prototype] Tools for the concurrent manipulation of variably sized Tensors.
Jupyter Notebook
252
star
48

tensorpipe

A tensor-aware point-to-point communication primitive for machine learning
C++
247
star
49

pytorch.github.io

The website for PyTorch
HTML
222
star
50

torcheval

A library that contains a rich collection of performant PyTorch model metrics, a simple interface to create new metrics, a toolkit to facilitate metric computation in distributed training and tools for PyTorch model evaluations.
Python
210
star
51

cppdocs

PyTorch C++ API Documentation
HTML
206
star
52

workshops

This is a repository for all workshop related materials.
Jupyter Notebook
204
star
53

hydra-torch

Configuration classes enabling type-safe PyTorch configuration for Hydra apps
Python
199
star
54

multipy

torch::deploy (multipy for non-torch uses) is a system that lets you get around the GIL problem by running multiple Python interpreters in a single C++ process.
C++
169
star
55

torchsnapshot

A performant, memory-efficient checkpointing library for PyTorch applications, designed with large, complex distributed workloads in mind.
Python
142
star
56

java-demo

Jupyter Notebook
126
star
57

rfcs

PyTorch RFCs (experimental)
120
star
58

torchdistx

Torch Distributed Experimental
Python
115
star
59

extension-script

Example repository for custom C++/CUDA operators for TorchScript
Python
112
star
60

csprng

Cryptographically secure pseudorandom number generators for PyTorch
Batchfile
105
star
61

pytorch_sphinx_theme

PyTorch Sphinx Theme
CSS
94
star
62

test-infra

This repository hosts code that supports the testing infrastructure for the main PyTorch repo. For example, this repo hosts the logic to track disabled tests and slow tests, as well as our continuation integration jobs HUD/dashboard.
TypeScript
78
star
63

expecttest

Python
71
star
64

torchcodec

PyTorch video decoding
Python
46
star
65

maskedtensor

MaskedTensors for PyTorch
Python
38
star
66

add-annotations-github-action

A GitHub action to run clang-tidy and annotate failures
JavaScript
13
star
67

ci-hud

HUD for CI activity on `pytorch/pytorch`, provides a top level view for jobs to easily discern regressions
JavaScript
11
star
68

probot

PyTorch GitHub bot written in probot
TypeScript
11
star
69

ossci-job-dsl

Jenkins job definitions for OSSCI
Groovy
10
star
70

pytorch-integration-testing

Testing downstream libraries using pytorch release candidates
Makefile
6
star
71

docs

This repository is automatically generated to contain the website source for the PyTorch documentation at https//pytorch.org/docs.
HTML
4
star
72

torchhub_testing

Repo to test torchhub. Nothing to see here.
4
star
73

dr-ci

Diagnose and remediate CI jobs
Haskell
2
star
74

pytorch-ci-dockerfiles

Scripts for generating docker images for PyTorch CI
2
star
75

labeler-github-action

GitHub action for labeling issues and pull requests based on conditions
TypeScript
1
star