• Stars
    star
    258
  • Rank 158,189 (Top 4 %)
  • Language
  • Created over 6 years ago
  • Updated about 6 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

吴恩达《Machine Learning Yearning》的中英文版(更新中):第1~第22章

machine-learning-yearning-cn

吴恩达《Machine Learning Yearning》的英文版完结:[第1~第58章](Machine Learning Yearning 1-58(by Andrew NG).pdf)

官网:

原作者:Andrew NG

申明:本文旨在传播知识,并无商业行为之意

TODO

  • 中文版因为版权问题,暂时无法更新

目录

Chapter 1. Why Machine Learning Strategy

Chapter 2. How to use this book to help your team

Chapter 3. Prerequisites and Notation

Chapter 4. Scale drives machine learning progress

Chapter 5. Your development and test sets

Chapter 6. Your dev and test sets should come from the same distribution

Chapter 7. How large do the dev/test sets need to be?

Chapter 8. Establish a single-number evaluation metric for your team to optimize

Chapter 9. Optimizingandsatisficingmetrics

Chapter 10. Having a dev set and metric speeds up iterations

Chapter 11. When to change dev/test sets and metrics

Chapter 12. Takeaways: Setting up development and test sets

Chapter 13. Build your first system quickly, then iterate

Chapter 14. Error analysis: Look at dev set examples to evaluate ideas

Chapter 15. Evaluate multiple ideas in parallel during error analysis

Chapter 16. Cleaning up mislabeled dev and test set examples

Chapter 17. If you have a large dev set, split it into two subsets, only one of which you look at

Chapter 18. How big should the Eyeball and Blackbox dev sets be?

Chapter 19. Takeaways: Basic error analysis

Chapter 20. Bias and Variance: The two big sources of error

Chapter 21. Examples of Bias and Variance

Chapter 22. Comparing to the optimal error rate

Chapter 23. Addressing Bias and Variance

Chapter 24. Bias vs. Variance tradeoff

Chapter 25. Techniques for reducing avoidable bias

Chapter 26. Techniques for reducing Variance

Chapter 27. Error analysis on the training set

Chapter 28. Diagnosing bias and variance: Learning curves

Chapter 29. Plotting training error

Chapter 30. Interpreting learning curves: High bias

Chapter 31. Interpreting learning curves: Other cases

Chapter 32. Plotting learning curves

Chapter 33. Why we compare to human-level performance

Chapter 34. How to define human-level performance

Chapter 35. Surpassing human-level performance

Chapter 36. Why train and test on different distributions

Chapter 37. Whether to use all your data

Chapter 38. Whether to include inconsistent data

Chapter 39. Weighting data

Chapter 40. Generalizing from the training set to the dev set

Chapete 41. Identifying Bias, Variance, and Data Mismatch Errors

Chapter 42. Addressing data mismatch

Chapter 43. Artificial data synthesis

Chapter 44. The Optimization Verification test

Chapter 45. General form of Optimization Verification test

Chapter 46. Reinforcement learning example

Chapter 47. The rise of end-to-end learning

Chapter 48. More end-to-end learning examples

Chapter 49. Pros and cons of end-to-end learning

Chapter 50. Choosing pipeline components: Data availability

Chapter 51. Choosing pipeline components: Task simplicity

Chapter 52. Directly learning rich outputs

Chapter 53. Error Analysis by Parts

Chapter 54. Attributing error to one part

Chapter 55: General case of error attribution

Chapter 56. Error analysis by parts and comparison to human-level performance

Chapter 57. Spotting a flawed ML pipeline

Chapter 58. Building a superhero team - Get your teammates to read this

More Repositories

1

CVPR2024-Papers-with-Code

CVPR 2024 论文和开源项目合集
17,414
star
2

awesome-object-detection

Awesome Object Detection based on handong1587 github: https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html
7,292
star
3

Deep-Learning-Interview-Book

深度学习面试宝典(含数学、机器学习、深度学习、计算机视觉、自然语言处理和SLAM等方向)
7,287
star
4

daily-paper-computer-vision

记录每天整理的计算机视觉/深度学习/机器学习相关方向的论文
6,226
star
5

AI-Job-Notes

AI算法岗求职攻略(涵盖准备攻略、刷题指南、内推和AI公司清单等资料)
5,007
star
6

awesome-lane-detection

A paper list of lane detection.
2,886
star
7

ICCV2023-Papers-with-Code

ICCV 2023 论文和开源项目合集
2,470
star
8

ECCV2024-Papers-with-Code

ECCV 2024 论文和开源项目合集,同时欢迎各位大佬提交issue,分享ECCV 2024论文和开源项目
1,671
star
9

TensorFlow-From-Zero-To-One

TensorFlow 最佳学习资源大全(含课程、书籍、博客、公开课等内容)
Jupyter Notebook
1,131
star
10

CV-Company-List

中国提供计算机视觉(CV)算法岗位的公司名单,欢迎大家提交issues进行补充
936
star
11

PyTorch-From-Zero-To-One

PyTorch从入门到精通
867
star
12

awesome-ai-awesomeness

A curated list of awesome awesomeness about artificial intelligence
821
star
13

AI-Job-Recommend

国内公司人工智能方向(含机器学习、深度学习、计算机视觉和自然语言处理)岗位的招聘信息(含全职、实习和校招)
752
star
14

CVPR2019-Code

CVPR 2019 Paper with Code
640
star
15

AI-Job-Resume

AI 算法岗简历模板
547
star
16

YOLO-Reproduce-Summary

YOLO reproduce summary (now based on YOLOv3)
350
star
17

opencv-facial-landmark-detection

使用OpenCV实现人脸关键点检测
C++
193
star
18

daily-question

每日一题(涉及但不仅限于机器学习、深度学习和计算机视觉等方向)
189
star
19

coding-note

刷题笔记:LeetCode和剑指Offer等
C++
90
star
20

awesome-image-stitching

详尽地介绍关于图像拼接的知识点
76
star
21

CVPR2021-Code

CVPR 2021 论文开源项目(paper with code)合集,同时欢迎各位大佬提交issue,分享CVPR 2021开源项目
70
star
22

Non-Maximum-Suppression

描述非极大值抑制(Non-Maximum-Suppression,NMS)
Python
55
star
23

cpp-from-zero-to-one

Learning C++ from zero to one
52
star
24

awesome-data-label-tools

开源的标注工具大全(含2D图像/视频/3D点云等)
48
star
25

paper-note

记录精读的paper日记
44
star
26

Computer-Vision-Tasks-Survey

【CVer出品】旨在盘点最全面的计算机视觉方向
31
star
27

Python-From-Zero-to-One

零基础入门学Python
Python
24
star
28

SIFT-GPU

A CUDA implementation of SIFT
C
23
star
29

Amusi-Note

Amusi 笔记
20
star
30

AI-Resources

AI方向资料汇总,涵盖机器学习,深度学习,计算机视觉等方向
10
star
31

Learning_OpenCV

Learning OpenCV(C++/Python)
Python
4
star
32

Deep-Learning-Note

深度学习的笔记
3
star
33

libjpeg-turbo-examples

libjpeg-turbo的简单实例(如打开图像、保存图像等)
C
3
star
34

amusi

2
star
35

awesome-image-stitching-code

The program is about image's sticthing
C++
2
star
36

SLAM-From-Zero-To-One

从理论到实践来学习SLAM
2
star
37

Merry_Christmas_Hat

Wear a christmas hat
Python
2
star
38

Machine-Learning-with-Python

Machine-Learning-with-Python follow sentdex
Python
1
star
39

amusi.github.io

the homepage of Amusi
HTML
1
star
40

TensorFlow_Practice

TensorFlow 实战Google深度学习框架
Python
1
star
41

python-numpy-tutorial-ch

简单的Python-Numpy入门教程
1
star