• Stars
    star
    1,058
  • Rank 43,617 (Top 0.9 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 6 years ago
  • Updated over 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A library of Recommender Systems

This repository provides a summary of our research on Recommender Systems. It includes our code base on different recommendation topics, a comprehensive reading list and a set of bechmark data sets.

Code Base

Currently, we are interested in sequential recommendation, feature-based recommendation and social recommendation.

Sequential Recommedation

Since users' interests are naturally dynamic, modeling users' sequential behaviors can learn contextual representations of users' current interests and therefore provide more accurate recommendations. In this project, we include some state-of-the-art sequential recommenders that empoly advanced sequence modeling techniques, such as Markov Chains (MCs), Recurrent Neural Networks (RNNs), Temporal Convolutional Neural Networks (TCN) and Self-attentive Neural Networks (Transformer).

Feature-based Recommendation

A general method for recommendation is to predict the click probabilities given users' profiles and items' features, which is known as CTR prediction. For CTR prediction, a core task is to learn (high-order) feature interactions because feature combinations are usually powerful indicators for prediction. However, enumerating all the possible high-order features will exponentially increase the dimension of data, leading to a more serious problem of model overfitting. In this work, we propose to learn low-dimentional representations of combinatorial features with self-attention mechanism, by which feature interactions are automatically implemented. Quantitative results show that our model have good prediction performance as well as satisfactory efficiency.

Social recommendation

Online social communities are an essential part of today's online experience. What we do or what we choose may be explicitly or implicitly influenced by our friends. In this project, we study the social influences in session-based recommendations, which simultaneously model users' dynamic interests and context-dependent social influences. First, we model users' dynamic interests with recurrent neural networks. In order to model context-dependent social influences, we propose to employ attention-based graph convolutional neural networks to differentiate friends' dynamic infuences in different behavior sessions.

Reading List

We maintain a reading list of RecSys papers to keep track of up-to-date research.

Data List

We provide a summary of existing benchmark data sets for evaluating recommendation methods.

New Data

We contribute a new large-scale dataset, which is collected from a popular movie/music/book review website Douban (www.douban.com). The data set could be useful for researches on sequential recommendation, social recommendation and multi-domain recommendation. See details here.

Publications:

More Repositories

1

LiteratureDL4Graph

A comprehensive collection of recent papers on graph deep learning
3,068
star
2

torchdrug

A powerful and flexible machine learning platform for drug discovery
Python
1,382
star
3

graphvite

GraphVite: A General and High-performance Graph Embedding System
C++
1,207
star
4

KnowledgeGraphEmbedding

Python
1,184
star
5

ULTRA

A foundation model for knowledge graph reasoning
Python
420
star
6

GMNN

Graph Markov Neural Networks
Python
400
star
7

GearNet

GearNet and Geometric Pretraining Methods for Protein Structure Representation Learning, ICLR'2023 (https://arxiv.org/abs/2203.06125)
Python
265
star
8

NBFNet

Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)
Python
196
star
9

ConfGF

Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).
Python
159
star
10

pLogicNet

Python
143
star
11

RNNLogic

C++
123
star
12

AStarNet

Official implementation of A* Networks
Python
121
star
13

GraphAny

GraphAny: A foundation model for node classification on any graph.
Python
101
star
14

GNN-QE

Official implementation of Graph Neural Network Query Executor (ICML 2022)
Python
89
star
15

PEER_Benchmark

PEER Benchmark, appear at NeurIPS 2022 Dataset and Benchmark Track (https://arxiv.org/abs/2206.02096)
Python
79
star
16

ESM-GearNet

ESM-GearNet for Protein Structure Representation Learning (https://arxiv.org/abs/2303.06275)
Python
75
star
17

DiffPack

Implementation of DiffPack: A Torsional Diffusion Model for Autoregressive Protein Side-Chain Packing
Python
71
star
18

GraphLoG

Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).
Python
68
star
19

ProtST

[ICML-23 ORAL] ProtST: Multi-Modality Learning of Protein Sequences and Biomedical Texts
Python
62
star
20

GraphAF

50
star
21

InductiveQE

Official implementation of Inductive Logical Query Answering in Knowledge Graphs (NeurIPS 2022)
Python
47
star
22

ContinuousGNN

Python
44
star
23

FewShotRE

Python
38
star
24

SiamDiff

Code for Pre-training Protein Encoder via Siamese Sequence-Structure Diffusion Trajectory Prediction (https://arxiv.org/abs/2301.12068)
Python
38
star
25

SPN

Python
29
star
26

GearBind

Pretrainable geometric graph neural network for antibody affinity maturation
Python
28
star
27

esm-s

Structure-Informed Protein Language Model
Python
26
star
28

DrugTutorial_AAAI2021

Tutorial for Drug Discovery on AAAI 2021.
CSS
8
star
29

DeepGraphLearning

Homepage
7
star
30

torchdrug-site

Website for TorchDrug
SCSS
6
star
31

GraphRepresentationLiterature

The literature on graph representation learning
4
star
32

ultra_torchdrug

A TorchDrug version of ULTRA for reproducibility
Python
4
star
33

AAAI19Tutorial

Tutorial "graph representation learning" given at AAAI'19
3
star
34

torchprotein-site

Website for TorchProtein
SCSS
3
star
35

coursewebsite

Course website for Deep Learning and Applications
CSS
2
star
36

Math80600A_2021W

Python
1
star