• Stars
    star
    143
  • Rank 257,007 (Top 6 %)
  • Language
    Python
  • Created about 5 years ago
  • Updated over 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

pLogicNet

This is an implementation of the model from the paper Probabilistic Logic Neural Networks for Reasoning.

Usage

In our repo, four benchmark datasets are provided, including FB15k, FB15k-237, WN18, WN18RR. Those datasets are available in the data folder. The folder kge provides the codes for knowledge graph embedding, and the folder mln gives an implementation of the Markov logic network, in which four rule patterns are considered, including the composition rule, symmetric rule, inverse rule and subrelation rule.

Since the MLN module is written in C++, we need to compile the MLN codes before running the program. To compile the codes, we can enter the mln folder and execute the following command:

g++ -O3 mln.cpp -o mln -lpthread

Afterwards, we can run pLogicNet by using the script run.py in the main folder.

During training, the program will create a saving folder in record to save the intermediate outputs and the results, and the folder is named as the time when the job is submitted. For each iteration, the program will create a subfolder inside the saving folder. In each subfolder, the result of pLogicNet on validation set, the result of pLogicNet on test set and the result of pLogicNet* on test set are saved into result_kge_valid.txt, result_kge.txt and result_kge_mln.txt respectively. Based on the validation results, we can then pick up the best model, and use it for evaluation or apply it to other knowledge graphs for link prediction.

Acknowledgement

The knowledge graph embedding codes in the kge folder are from the nice repo KnowledgeGraphEmbedding, where many knowledge graph embedding algorithms are implemented.

Citation

Please consider citing the following paper if you find our codes helpful. Thank you!

@inproceedings{qu2019probabilistic,
  title={Probabilistic Logic Neural Networks for Reasoning},
  author={Qu, Meng and Tang, Jian},
  booktitle={Advances in neural information processing systems},
  year={2019}
}

More Repositories

1

LiteratureDL4Graph

A comprehensive collection of recent papers on graph deep learning
3,068
star
2

torchdrug

A powerful and flexible machine learning platform for drug discovery
Python
1,382
star
3

graphvite

GraphVite: A General and High-performance Graph Embedding System
C++
1,207
star
4

KnowledgeGraphEmbedding

Python
1,184
star
5

RecommenderSystems

Python
1,058
star
6

ULTRA

A foundation model for knowledge graph reasoning
Python
420
star
7

GMNN

Graph Markov Neural Networks
Python
400
star
8

GearNet

GearNet and Geometric Pretraining Methods for Protein Structure Representation Learning, ICLR'2023 (https://arxiv.org/abs/2203.06125)
Python
265
star
9

NBFNet

Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)
Python
196
star
10

ConfGF

Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).
Python
159
star
11

RNNLogic

C++
123
star
12

AStarNet

Official implementation of A* Networks
Python
121
star
13

GraphAny

GraphAny: A foundation model for node classification on any graph.
Python
101
star
14

GNN-QE

Official implementation of Graph Neural Network Query Executor (ICML 2022)
Python
89
star
15

PEER_Benchmark

PEER Benchmark, appear at NeurIPS 2022 Dataset and Benchmark Track (https://arxiv.org/abs/2206.02096)
Python
79
star
16

ESM-GearNet

ESM-GearNet for Protein Structure Representation Learning (https://arxiv.org/abs/2303.06275)
Python
75
star
17

DiffPack

Implementation of DiffPack: A Torsional Diffusion Model for Autoregressive Protein Side-Chain Packing
Python
71
star
18

GraphLoG

Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).
Python
68
star
19

ProtST

[ICML-23 ORAL] ProtST: Multi-Modality Learning of Protein Sequences and Biomedical Texts
Python
62
star
20

GraphAF

50
star
21

InductiveQE

Official implementation of Inductive Logical Query Answering in Knowledge Graphs (NeurIPS 2022)
Python
47
star
22

ContinuousGNN

Python
44
star
23

FewShotRE

Python
38
star
24

SiamDiff

Code for Pre-training Protein Encoder via Siamese Sequence-Structure Diffusion Trajectory Prediction (https://arxiv.org/abs/2301.12068)
Python
38
star
25

SPN

Python
29
star
26

GearBind

Pretrainable geometric graph neural network for antibody affinity maturation
Python
28
star
27

esm-s

Structure-Informed Protein Language Model
Python
26
star
28

DrugTutorial_AAAI2021

Tutorial for Drug Discovery on AAAI 2021.
CSS
8
star
29

DeepGraphLearning

Homepage
7
star
30

torchdrug-site

Website for TorchDrug
SCSS
6
star
31

GraphRepresentationLiterature

The literature on graph representation learning
4
star
32

ultra_torchdrug

A TorchDrug version of ULTRA for reproducibility
Python
4
star
33

AAAI19Tutorial

Tutorial "graph representation learning" given at AAAI'19
3
star
34

torchprotein-site

Website for TorchProtein
SCSS
3
star
35

coursewebsite

Course website for Deep Learning and Applications
CSS
2
star
36

Math80600A_2021W

Python
1
star