• Stars
    star
    181
  • Rank 212,110 (Top 5 %)
  • Language
    Python
  • License
    MIT License
  • Created over 4 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A fork of FairMOT used to do vehicle MOT.用于跟踪车辆的多目标跟踪, 自定义数据进行单类别多目标实时跟踪

FairMOTVehicle

A fork of FairMOT used to do vehicle MOT(multi-object tracking). You can refer to origin fork
FairMOT link

车辆跟踪,效果如下,此测试未经过训练(Results of vehicle mot is as follows, the video seq has not been trained):

image

使用UA-DETRAC公开数据集训练FairMOT(Using UA-DETRAC as training dataset for vehicle tracking)

UA_DETRAC是一个公开的车辆跟踪数据集, 共8万多张训练数据集,每一张图的每一辆车都经过了精心的标注。
UA-DETRAC benchmark link

训练方法(具体调用时,根据服务器目录, 修改自定义路径)

(1). 使用gen_labels_detrac.py脚本预处理原始的训练数据(Call gen_labels_detrac.py to prepare UA-DETRAC for training)
  • 调用preprocess函数创建用于FairMOT的标准训练数据目录(Call preprocess function to make directory structure FairMOT required)
  • 调用核心函数, gen_labels函数,解析UA-DETRAC的xml格式标签文件转换成FairMOT格式的标签文件,生成txt标签文件(Call the core function gen_labels to parse xml labels of UA-DETRAC and convert to the FairMOT label format, i.e txt file for each image)
  • 调用gen_dot_train_file函数,生成用于训练的.train文件(Call gen_dot_train_file to generate dot train file for training(which contain all image path of training dataset))
(2). 编写json格式的cfg文件./src/lib/cfg/detrac.json(Edit a json configuration file for this training)
(3). 修改opts.py文件,修改训练参数,开始训练(Edit opts.py for trainig parameters)
  • 修改--load_model参数, 选择一个断点模型, 如 ctdet_coco_dla_2x.pth, 从这个预训练模型开始训练
  • 修改----data_cfg参数, 选择训练、测试数据,如 ../src/lib/cfg/detrac.json
  • python or python3 ./src/train.py启动训练进程即可。

More Repositories

1

Vehicle-Car-detection-and-multilabel-classification

使用YOLO_v3_tiny和B-CNN实现街头车辆的检测和车辆属性的多标签识别 Using yolo_v3_tiny to do vehicle or car detection and attribute's multilabel classification or recognize
Python
575
star
2

MCMOT

Real time one-stage multi-class & multi-object tracking based on anchor-free detection and ReID
Python
380
star
3

RepNet-MDNet-VehicleReID

Implementing RepNet(a two-stream multitask learning network) to do vehicle Re-identification, vehicle search(or vehicle match) with PyTorch 可用于车辆细粒度识别,车辆再识别,车辆匹配,车辆检索,RepNet/MDNet的一种PyTorch实现
Python
240
star
4

VideoCaption

视频的文本摘要(标注),输入一段视频,通过深度学习网络和人工智能程序识别视频主要表达的意思(Input a video output a txt decribing the video)。
Python
169
star
5

FaceRecognition

Face recognition using triplet loss, implementing FaceNet with pytorch.人脸识别项目,提供一个小型数据集用作验证,使用三元组损失函数(Triplet loss)提升准确率和泛化能力,对FaceNet进行了一种实现。
Python
127
star
6

MCMOT-ByteTrack

Python
104
star
7

YOLOV4_MCMOT

Using YOLOV4 as detector for MCMOT.
Python
103
star
8

DenseBox

Implemention of Baidu's DenseBox used for multi-task learning of object detection and landmark(key-point) localization 用PyTorch实现了百度的DenseBox并针对任意宽高比矩形(不仅限于方形)的目标检测做了优化,不仅可以输出关键点的热力图(heatmap)而且可以输出每个bbox对应关键点坐标
Python
94
star
9

MOTEvaluate

Python
21
star
10

SFM_OpenCV

A SFM project implemented with Opencv
C++
18
star
11

ByteTrack-MCMOT-TensorRT

MCMOT TensorRT deployment(C/C++) based on ByteTrack.
C++
16
star
12

Depthmap-refinement-upsampling-

Implemention of paper "Spatial-Depth Super Resolution for Range Images" with python
Python
16
star
13

SFM_PMVS_3DReconstruct_python

SFM PMVS 3D sparse to dense reconstruct in python.
Python
11
star
14

BinoCameraCalibrate

Binocular camera calibration and rectification using OpenCV.
C++
11
star
15

Algorithms

Algorithms's implementions for testing 一些机器学习,统计,三维重建等算法实现和测试
Python
8
star
16

PyScripts

Python
7
star
17

ExposureFusionPy

Implementing ExposureFusion algorithm using OpenCV and Numpy in Python3.
Python
5
star
18

MonoCameraCalibrate

C++
4
star
19

ExposureFusionCpp

C++
4
star
20

TestKalman

Python
3
star
21

StereoCalibrateRectify

C++
3
star
22

MonoDepthV1

Python
3
star
23

PytorchToCaffe

Python
3
star
24

MyNanoDet

Using custom dataset for training.
Python
3
star
25

TestOpenCVCuda

Test openCV with CUDA
C++
3
star
26

MonoDepthV2

Jupyter Notebook
3
star
27

SelfSuperviseAidedBlindIQA

SelfSuperviseAidedBlindIQA
Python
2
star
28

Stereo3DReconstruct

Python
2
star
29

MyHDRUNet

Python
2
star
30

MyEnlightenGAN

Python
2
star
31

My_CRNN

2
star
32

ColmapMVSMy

C++
2
star
33

MySlamExperiments

C++
Python
2
star
34

RealChineseLiscensePlateGenerator

Python
2
star
35

CaptainEven

1
star
36

MyMVE

C++
1
star