• Stars
    star
    123
  • Rank 290,145 (Top 6 %)
  • Language
    Python
  • License
    MIT License
  • Created over 5 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

PyTorch implementation of Residual Dense Network for Image Super-Resolution (CVPR 2018)

RDN

This repository is implementation of the "Residual Dense Network for Image Super-Resolution".

Requirements

  • PyTorch 1.0.0
  • Numpy 1.15.4
  • Pillow 5.4.1
  • h5py 2.8.0
  • tqdm 4.30.0

Train

The DIV2K, Set5 dataset converted to HDF5 can be downloaded from the links below.

Dataset Scale Type Link
DIV2K 2 Train Download
DIV2K 3 Train Download
DIV2K 4 Train Download
Set5 2 Eval Download
Set5 3 Eval Download
Set5 4 Eval Download

Otherwise, you can use prepare.py to create custom dataset.

python train.py --train-file "BLAH_BLAH/DIV2K_x4.h5" \
                --eval-file "BLAH_BLAH/Set5_x4.h5" \
                --outputs-dir "BLAH_BLAH/outputs" \
                --scale 4 \
                --num-features 64 \
                --growth-rate 64 \
                --num-blocks 16 \
                --num-layers 8 \
                --lr 1e-4 \
                --batch-size 16 \
                --patch-size 32 \
                --num-epochs 800 \
                --num-workers 8 \
                --seed 123                

Test

Pre-trained weights can be downloaded from the links below.

Model Scale Link
RDN (D=16, C=8, G=64, G0=64) 2 Download
RDN (D=16, C=8, G=64, G0=64) 3 Download
RDN (D=16, C=8, G=64, G0=64) 4 Download

The results are stored in the same path as the query image.

python test.py --weights-file "BLAH_BLAH/rdn_x4.pth" \
               --image-file "data/119082.png" \
               --scale 4 \
               --num-features 64 \
               --growth-rate 64 \
               --num-blocks 16 \
               --num-layers 8

Results

PSNR was calculated on the Y channel.

Set5

Eval. Mat Scale RDN (Paper) RDN (Ours)
PSNR 2 38.24 38.18
PSNR 3 34.71 34.73
PSNR 4 32.47 32.40
Original BICUBIC x4 RDN x4 (25.08 dB)
Original BICUBIC x4 RDN x4 (32.98 dB)

Citation

@InProceedings{Lim_2017_CVPR_Workshops,
  author = {Lim, Bee and Son, Sanghyun and Kim, Heewon and Nah, Seungjun and Lee, Kyoung Mu},
  title = {Enhanced Deep Residual Networks for Single Image Super-Resolution},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  month = {July},
  year = {2017}
}

@inproceedings{zhang2018residual,
    title={Residual Dense Network for Image Super-Resolution},
    author={Zhang, Yulun and Tian, Yapeng and Kong, Yu and Zhong, Bineng and Fu, Yun},
    booktitle={CVPR},
    year={2018}
}

@article{zhang2020rdnir,
    title={Residual Dense Network for Image Restoration},
    author={Zhang, Yulun and Tian, Yapeng and Kong, Yu and Zhong, Bineng and Fu, Yun},
    journal={TPAMI},
    year={2020}
}

More Repositories

1

SRCNN-pytorch

PyTorch implementation of Image Super-Resolution Using Deep Convolutional Networks (ECCV 2014)
Python
519
star
2

FSRCNN-pytorch

PyTorch implementation of Accelerating the Super-Resolution Convolutional Neural Network (ECCV 2016)
Python
211
star
3

REDNet-pytorch

PyTorch Implementation of image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections (NIPS 2016)
Python
98
star
4

ESPCN-pytorch

PyTorch implementation of Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network (CVPR 2016)
Python
63
star
5

RCAN-pytorch

PyTorch implementation of Image Super-Resolution Using Very Deep Residual Channel Attention Networks (ECCV 2018)
Python
40
star
6

ARCNN-pytorch

PyTorch implementation of Deep Convolution Networks for Compression Artifacts Reduction (ICCV 2015)
Python
38
star
7

DnCNN-pytorch

PyTorch implementation of Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising (TIP 2017)
Python
26
star
8

SRDenseNet-pytorch

PyTorch implementation of Image Super-Resolution Using Dense Skip Connections (ICCV 2017)
Python
20
star
9

DRRN-pytorch

PyTorch implementation of Image Super-Resolution via Deep Recursive Residual Network (CVPR 2017)
Python
19
star
10

WDSR-pytorch

PyTorch implementation of Wide Activation for Efficient and Accurate Image Super-Resolution (CVPR Workshop 2018)
Python
15
star
11

SNet-pytorch

PyTorch implementation of S-Net: A Scalable Convolutional Neural Network for JPEG Compression Artifact Reduction (2018)
Python
13
star
12

IDN-pytorch

PyTorch Implementation of Fast and Accurate Single Image Super-Resolution via Information Distillation Network (CVPR 2018)
Python
8
star