• Stars
    star
    20
  • Rank 1,121,974 (Top 23 %)
  • Language
    Python
  • Created over 5 years ago
  • Updated over 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

PyTorch implementation of Image Super-Resolution Using Dense Skip Connections (ICCV 2017)

More Repositories

1

SRCNN-pytorch

PyTorch implementation of Image Super-Resolution Using Deep Convolutional Networks (ECCV 2014)
Python
519
star
2

FSRCNN-pytorch

PyTorch implementation of Accelerating the Super-Resolution Convolutional Neural Network (ECCV 2016)
Python
211
star
3

RDN-pytorch

PyTorch implementation of Residual Dense Network for Image Super-Resolution (CVPR 2018)
Python
123
star
4

REDNet-pytorch

PyTorch Implementation of image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections (NIPS 2016)
Python
98
star
5

ESPCN-pytorch

PyTorch implementation of Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network (CVPR 2016)
Python
63
star
6

RCAN-pytorch

PyTorch implementation of Image Super-Resolution Using Very Deep Residual Channel Attention Networks (ECCV 2018)
Python
40
star
7

ARCNN-pytorch

PyTorch implementation of Deep Convolution Networks for Compression Artifacts Reduction (ICCV 2015)
Python
38
star
8

DnCNN-pytorch

PyTorch implementation of Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising (TIP 2017)
Python
26
star
9

DRRN-pytorch

PyTorch implementation of Image Super-Resolution via Deep Recursive Residual Network (CVPR 2017)
Python
19
star
10

WDSR-pytorch

PyTorch implementation of Wide Activation for Efficient and Accurate Image Super-Resolution (CVPR Workshop 2018)
Python
15
star
11

SNet-pytorch

PyTorch implementation of S-Net: A Scalable Convolutional Neural Network for JPEG Compression Artifact Reduction (2018)
Python
13
star
12

IDN-pytorch

PyTorch Implementation of Fast and Accurate Single Image Super-Resolution via Information Distillation Network (CVPR 2018)
Python
8
star