• Stars
    star
    211
  • Rank 186,867 (Top 4 %)
  • Language
    Python
  • Created over 5 years ago
  • Updated almost 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

PyTorch implementation of Accelerating the Super-Resolution Convolutional Neural Network (ECCV 2016)

FSRCNN

This repository is implementation of the "Accelerating the Super-Resolution Convolutional Neural Network".

Differences from the original

  • Added the zero-padding
  • Used the Adam instead of the SGD

Requirements

  • PyTorch 1.0.0
  • Numpy 1.15.4
  • Pillow 5.4.1
  • h5py 2.8.0
  • tqdm 4.30.0

Train

The 91-image, Set5 dataset converted to HDF5 can be downloaded from the links below.

Dataset Scale Type Link
91-image 2 Train Download
91-image 3 Train Download
91-image 4 Train Download
Set5 2 Eval Download
Set5 3 Eval Download
Set5 4 Eval Download

Otherwise, you can use prepare.py to create custom dataset.

python train.py --train-file "BLAH_BLAH/91-image_x3.h5" \
                --eval-file "BLAH_BLAH/Set5_x3.h5" \
                --outputs-dir "BLAH_BLAH/outputs" \
                --scale 3 \
                --lr 1e-3 \
                --batch-size 16 \
                --num-epochs 20 \
                --num-workers 8 \
                --seed 123                

Test

Pre-trained weights can be downloaded from the links below.

Model Scale Link
FSRCNN(56,12,4) 2 Download
FSRCNN(56,12,4) 3 Download
FSRCNN(56,12,4) 4 Download

The results are stored in the same path as the query image.

python test.py --weights-file "BLAH_BLAH/fsrcnn_x3.pth" \
               --image-file "data/butterfly_GT.bmp" \
               --scale 3

Results

PSNR was calculated on the Y channel.

Set5

Eval. Mat Scale Paper Ours (91-image)
PSNR 2 36.94 37.12
PSNR 3 33.06 33.22
PSNR 4 30.55 30.50
Original BICUBIC x3 FSRCNN x3 (34.66 dB)
Original BICUBIC x3 FSRCNN x3 (28.55 dB)

More Repositories

1

SRCNN-pytorch

PyTorch implementation of Image Super-Resolution Using Deep Convolutional Networks (ECCV 2014)
Python
519
star
2

RDN-pytorch

PyTorch implementation of Residual Dense Network for Image Super-Resolution (CVPR 2018)
Python
123
star
3

REDNet-pytorch

PyTorch Implementation of image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections (NIPS 2016)
Python
98
star
4

ESPCN-pytorch

PyTorch implementation of Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network (CVPR 2016)
Python
63
star
5

RCAN-pytorch

PyTorch implementation of Image Super-Resolution Using Very Deep Residual Channel Attention Networks (ECCV 2018)
Python
40
star
6

ARCNN-pytorch

PyTorch implementation of Deep Convolution Networks for Compression Artifacts Reduction (ICCV 2015)
Python
38
star
7

DnCNN-pytorch

PyTorch implementation of Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising (TIP 2017)
Python
26
star
8

SRDenseNet-pytorch

PyTorch implementation of Image Super-Resolution Using Dense Skip Connections (ICCV 2017)
Python
20
star
9

DRRN-pytorch

PyTorch implementation of Image Super-Resolution via Deep Recursive Residual Network (CVPR 2017)
Python
19
star
10

WDSR-pytorch

PyTorch implementation of Wide Activation for Efficient and Accurate Image Super-Resolution (CVPR Workshop 2018)
Python
15
star
11

SNet-pytorch

PyTorch implementation of S-Net: A Scalable Convolutional Neural Network for JPEG Compression Artifact Reduction (2018)
Python
13
star
12

IDN-pytorch

PyTorch Implementation of Fast and Accurate Single Image Super-Resolution via Information Distillation Network (CVPR 2018)
Python
8
star