• Stars
    star
    98
  • Rank 345,882 (Top 7 %)
  • Language
    Python
  • Created over 5 years ago
  • Updated over 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

PyTorch Implementation of image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections (NIPS 2016)

RED-Net

This repository is implementation of the "Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections".
To reduce computational cost, it adopts stride 2 for the first convolution layer and the last transposed convolution layer.

Requirements

  • PyTorch
  • Tensorflow
  • tqdm
  • Numpy
  • Pillow

Tensorflow is required for quickly fetching image in training phase.

Results

Input JPEG (Quality 10)
AR-CNN RED-Net 10
RED-Net 20 RED-Net 30

Usages

Train

When training begins, the model weights will be saved every epoch.
If you want to train quickly, you should use --use_fast_loader option.

python main.py --arch "REDNet30" \  # REDNet10, REDNet20, REDNet30               
               --images_dir "" \
               --outputs_dir "" \
               --jpeg_quality 10 \
               --patch_size 50 \
               --batch_size 16 \
               --num_epochs 20 \
               --lr 1e-4 \
               --threads 8 \
               --seed 123 \
               --use_fast_loader              

Test

Output results consist of image compressed with JPEG and image with artifacts reduced.

python example --arch "REDNet30" \  # REDNet10, REDNet20, REDNet30
               --weights_path "" \
               --image_path "" \
               --outputs_dir "" \
               --jpeg_quality 10               

More Repositories

1

SRCNN-pytorch

PyTorch implementation of Image Super-Resolution Using Deep Convolutional Networks (ECCV 2014)
Python
519
star
2

FSRCNN-pytorch

PyTorch implementation of Accelerating the Super-Resolution Convolutional Neural Network (ECCV 2016)
Python
211
star
3

RDN-pytorch

PyTorch implementation of Residual Dense Network for Image Super-Resolution (CVPR 2018)
Python
123
star
4

ESPCN-pytorch

PyTorch implementation of Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network (CVPR 2016)
Python
63
star
5

RCAN-pytorch

PyTorch implementation of Image Super-Resolution Using Very Deep Residual Channel Attention Networks (ECCV 2018)
Python
40
star
6

ARCNN-pytorch

PyTorch implementation of Deep Convolution Networks for Compression Artifacts Reduction (ICCV 2015)
Python
38
star
7

DnCNN-pytorch

PyTorch implementation of Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising (TIP 2017)
Python
26
star
8

SRDenseNet-pytorch

PyTorch implementation of Image Super-Resolution Using Dense Skip Connections (ICCV 2017)
Python
20
star
9

DRRN-pytorch

PyTorch implementation of Image Super-Resolution via Deep Recursive Residual Network (CVPR 2017)
Python
19
star
10

WDSR-pytorch

PyTorch implementation of Wide Activation for Efficient and Accurate Image Super-Resolution (CVPR Workshop 2018)
Python
15
star
11

SNet-pytorch

PyTorch implementation of S-Net: A Scalable Convolutional Neural Network for JPEG Compression Artifact Reduction (2018)
Python
13
star
12

IDN-pytorch

PyTorch Implementation of Fast and Accurate Single Image Super-Resolution via Information Distillation Network (CVPR 2018)
Python
8
star