• Stars
    star
    212
  • Rank 186,122 (Top 4 %)
  • Language
    Python
  • License
    BSD 3-Clause "New...
  • Created over 4 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Official repository for "SimpleTOD: A Simple Language Model for Task-Oriented Dialogue"

SimpleTOD: A Simple Language Model for Task-Oriented Dialogue

Authors: Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu, Semih Yavuz, and Richard Socher

SimpleTOD

SimpleTOD single turn

Introduction

Task-oriented dialogue (TOD) systems accomplish a goal described by a user in natural language. They often use a pipeline approach. Such approach requires natural language understanding (NLU) for belief state tracking, dialogue management (DM) for deciding which actions to take based on those beliefs, and natural language generation (NLG) for generating responses.

We propose recasting task-oriented dialogue as a simple, causal (unidirectional) language modeling task. We show that such an approach can solve all the sub-tasks in a unified way using multi-task maximum likelihood training. The proposed Simple Task-Oriented Dialogue (SimpleTOD) approach enables modeling of the inherent dependencies between the sub-tasks of task-oriented dialogue, by optimizing for all tasks in an end-to-end manner.

Paper link: https://arxiv.org/abs/2005.00796

Blog link: https://blog.einstein.ai/simpletod

Table of Contents

Installation

The package general requirements are

  • Python >= 3.6
  • Pytorch >= 1.2 (installation instructions here)
  • Transformers >= 2.5.1 (installation instructions here)

1- The package can be installed by running the following command.

pip install -r requirements.txt

2- Running inside docker container

docker build -t <image_name>:<tag> -f Dockerfile

Usage

This section explains steps to preprocess MultiWOZ dataset and training the model.

Preprocessing:

It includes downloading MultiWOZ dataset, performing delexicaliztion, and creating dataset for language model

create_dataset.sh

Each dialogue turn will be represented as a sequence, which contains previous user/system turns, belief, action, and delexicalized response

<|endoftext|> <|context|> <|user|> i am looking for a college type attraction . <|system|> there are 18 colleges i have found , would you prefer 1 in town centre or in the west ? <|user|> i would like to visit on in town centre please . <|system|> sure , we have thirteen options , 10 of which are free . may i suggest king s college , or hughes hall ? <|user|> okay , may i have their postcode , entrance fee , and phone number ?<|endofcontext|> 
<|belief|> attraction type college , attraction name kings college|hughes hall , attraction area centre <|endofbelief|> 
<|action|> attraction inform name , attraction inform fee , attraction inform post , attraction inform phone <|endofaction|> 
<|response|> sure , the post code to [attraction_name] is [attraction_postcode] , the entrance fee is free , and phone number [attraction_phone] <|endofresponse|> <|endoftext|>

DST training:

training the model for predicting belief states.

train_dst.sh $GPU gpt2 $GPT2_TYPE $BATCH

For this task, we include none slot values in the sequence. We observed that this will improve SimpleTOD performance on DST by reducing false positive rates.

<|endoftext|> <|context|> <|user|> am looking for a place to to stay that has cheap price range it should be in a type of hotel <|endofcontext|> 
<|belief|> hotel name not mentioned , hotel area not mentioned , hotel parking not mentioned , hotel pricerange cheap , hotel stars not mentioned , hotel internet not mentioned , hotel type hotel <|endofbelief|> <|endoftext|>

End-to-End training:

In this step, we train SimpleTOD on the sequence of context+belief+action+delex response. Compared to DST task, we do not include none slot values, because of the sequence length limitaiton od GPT2.

train_end2end.sh $GPU gpt2 $GPT2_TYPE $BATCH

Generation:

This script will generate SimpeTOD belief/action/responses. Generation is based on each dialogue, where it create context for each turn and save the generated belief, action, and responses for the dialogue.

CUDA_VISIBLE_DEVICES=$GPU python generate_dialogue.py $CHECKPOINT $DECODING

It will save the model output in a json file MODEL_OUTPUT which contains all dialogues with groundtruth user and system responses as well.

  • In order to use DB search during generation, set --use_db_search (this will use oracle DB search results)
  • In order to use DB search dynamically, set --use_db_search and --use_dynamic_db
  • To use oracle belief and actions, simple set --use_oracle_belief and --use_oracle_action

Evaluation

MultiWOZ evaluation contains two part, Dialogue State Tracking (DST) and End-to-End.

DST evaluation

In order to compute joint accuracy, simply run the following script using the generated MODEL_OUTPUT file. it will use the generated belief states to compute the metric. It will compute joint accuracy without any label cleaning.

python compute_joint_acc.py $MODEL_OUTPUT 

There are two types of label cleaning that can be used to compute joint accuracy.

  • To use default lable cleaning suggested by MultiWOZ author, please set --default_cleaning (for more details, please refer to MultiWOZ FAQ.5)
  • We found other type of noisy annotation. Please refer to the paper for more details different types of noisy annotations. Here, we provide an option to compute joint accuracy by fixing Type 2 noisy annotation (where one or more slots are not labeled in some turns.) by setting --type2_cleaning
  • The complete list of Type 2 noisy annotations is here. For more details on noisy annotation on MultiWOZ dataset, please refer to the paper

End-to-End evaluation

In order to compute inform/success/BLEU, simply run the following script. It will load generated belief states and responses, and computes the metrics.

python evaluate_multiwoz.py $MODEL_OUTPUT

Demo

In order to test the model in real conversation with human, we have provided a simple script where user can input text in a multi turn setting, and see the responses from SimpleTOD. It will generate lexicalized responses and belief states at each turn. For more information, please read the blog.

python demo.py $CHECKPOINT $DECODING

Citation

@article{hosseini2020simple,
  title={A simple language model for task-oriented dialogue},
  author={Hosseini-Asl, Ehsan and McCann, Bryan and Wu, Chien-Sheng and Yavuz, Semih and Socher, Richard},
  journal={arXiv preprint arXiv:2005.00796},
  year={2020}
}

License

The code is released under the BSD-3 License - see LICENSE for details

More Repositories

1

LAVIS

LAVIS - A One-stop Library for Language-Vision Intelligence
Jupyter Notebook
9,587
star
2

CodeGen

CodeGen is a family of open-source model for program synthesis. Trained on TPU-v4. Competitive with OpenAI Codex.
Python
4,594
star
3

BLIP

PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
Jupyter Notebook
3,879
star
4

akita

🚀 State Management Tailored-Made for JS Applications
TypeScript
3,442
star
5

Merlion

Merlion: A Machine Learning Framework for Time Series Intelligence
Python
3,355
star
6

ja3

JA3 is a standard for creating SSL client fingerprints in an easy to produce and shareable way.
Python
2,666
star
7

CodeT5

Home of CodeT5: Open Code LLMs for Code Understanding and Generation
Python
2,437
star
8

decaNLP

The Natural Language Decathlon: A Multitask Challenge for NLP
Python
2,301
star
9

TransmogrifAI

TransmogrifAI (pronounced trăns-mŏgˈrə-fī) is an AutoML library for building modular, reusable, strongly typed machine learning workflows on Apache Spark with minimal hand-tuning
Scala
2,234
star
10

policy_sentry

IAM Least Privilege Policy Generator
Python
1,986
star
11

cloudsplaining

Cloudsplaining is an AWS IAM Security Assessment tool that identifies violations of least privilege and generates a risk-prioritized report.
JavaScript
1,972
star
12

awd-lstm-lm

LSTM and QRNN Language Model Toolkit for PyTorch
Python
1,900
star
13

ctrl

Conditional Transformer Language Model for Controllable Generation
Python
1,766
star
14

lwc

⚡️ LWC - A Blazing Fast, Enterprise-Grade Web Components Foundation
JavaScript
1,619
star
15

WikiSQL

A large annotated semantic parsing corpus for developing natural language interfaces.
HTML
1,606
star
16

sloop

Kubernetes History Visualization
Go
1,457
star
17

CodeTF

CodeTF: One-stop Transformer Library for State-of-the-art Code LLM
Python
1,375
star
18

ALBEF

Code for ALBEF: a new vision-language pre-training method
Python
1,276
star
19

pytorch-qrnn

PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM
Python
1,255
star
20

ai-economist

Foundation is a flexible, modular, and composable framework to model socio-economic behaviors and dynamics with both agents and governments. This framework can be used in conjunction with reinforcement learning to learn optimal economic policies, as done by the AI Economist (https://www.einstein.ai/the-ai-economist).
Python
964
star
21

design-system-react

Salesforce Lightning Design System for React
JavaScript
919
star
22

jarm

Python
914
star
23

tough-cookie

RFC6265 Cookies and CookieJar for Node.js
TypeScript
858
star
24

OmniXAI

OmniXAI: A Library for eXplainable AI
Jupyter Notebook
853
star
25

reactive-grpc

Reactive stubs for gRPC
Java
826
star
26

xgen

Salesforce open-source LLMs with 8k sequence length.
Python
717
star
27

UniControl

Unified Controllable Visual Generation Model
Python
614
star
28

vulnreport

Open-source pentesting management and automation platform by Salesforce Product Security
HTML
593
star
29

hassh

HASSH is a network fingerprinting standard which can be used to identify specific Client and Server SSH implementations. The fingerprints can be easily stored, searched and shared in the form of a small MD5 fingerprint.
Python
529
star
30

progen

Official release of the ProGen models
Python
518
star
31

base-components-recipes

A collection of base component recipes for Lightning Web Components on Salesforce Platform
JavaScript
509
star
32

Argus

Time series monitoring and alerting platform.
Java
501
star
33

CodeRL

This is the official code for the paper CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning (NeurIPS22).
Python
488
star
34

matchbox

Write PyTorch code at the level of individual examples, then run it efficiently on minibatches.
Python
488
star
35

PCL

PyTorch code for "Prototypical Contrastive Learning of Unsupervised Representations"
Python
483
star
36

DialogStudio

DialogStudio: Towards Richest and Most Diverse Unified Dataset Collection and Instruction-Aware Models for Conversational AI
Python
472
star
37

cove

Python
470
star
38

warp-drive

Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning Framework on a GPU (JMLR 2022)
Python
452
star
39

PyRCA

PyRCA: A Python Machine Learning Library for Root Cause Analysis
Python
408
star
40

observable-membrane

A Javascript Membrane implementation using Proxies to observe mutation on an object graph
TypeScript
368
star
41

DeepTime

PyTorch code for Learning Deep Time-index Models for Time Series Forecasting (ICML 2023)
Python
351
star
42

ULIP

Python
316
star
43

MultiHopKG

Multi-hop knowledge graph reasoning learned via policy gradient with reward shaping and action dropout
Jupyter Notebook
300
star
44

logai

LogAI - An open-source library for log analytics and intelligence
Python
298
star
45

CodeGen2

CodeGen2 models for program synthesis
Python
272
star
46

provis

Official code repository of "BERTology Meets Biology: Interpreting Attention in Protein Language Models."
Python
269
star
47

causalai

Salesforce CausalAI Library: A Fast and Scalable framework for Causal Analysis of Time Series and Tabular Data
Jupyter Notebook
256
star
48

jaxformer

Minimal library to train LLMs on TPU in JAX with pjit().
Python
255
star
49

EDICT

Jupyter Notebook
247
star
50

rules_spring

Bazel rule for building Spring Boot apps as a deployable jar
Starlark
224
star
51

ETSformer

PyTorch code for ETSformer: Exponential Smoothing Transformers for Time-series Forecasting
Python
221
star
52

TabularSemanticParsing

Translating natural language questions to a structured query language
Jupyter Notebook
220
star
53

themify

👨‍🎨 CSS Themes Made Easy. A robust, opinionated solution to manage themes in your web application
TypeScript
216
star
54

grpc-java-contrib

Useful extensions for the grpc-java library
Java
208
star
55

GeDi

GeDi: Generative Discriminator Guided Sequence Generation
Python
207
star
56

aws-allowlister

Automatically compile an AWS Service Control Policy that ONLY allows AWS services that are compliant with your preferred compliance frameworks.
Python
207
star
57

generic-sidecar-injector

A generic framework for injecting sidecars and related configuration in Kubernetes using Mutating Webhook Admission Controllers
Go
203
star
58

mirus

Mirus is a cross data-center data replication tool for Apache Kafka
Java
201
star
59

CoST

PyTorch code for CoST: Contrastive Learning of Disentangled Seasonal-Trend Representations for Time Series Forecasting (ICLR 2022)
Python
196
star
60

factCC

Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper
Python
192
star
61

runway-browser

Interactive visualization framework for Runway models of distributed systems
JavaScript
188
star
62

glad

Global-Locally Self-Attentive Dialogue State Tracker
Python
186
star
63

cloud-guardrails

Rapidly apply hundreds of security controls in Azure
HCL
181
star
64

ALPRO

Align and Prompt: Video-and-Language Pre-training with Entity Prompts
Python
177
star
65

densecap

Jupyter Notebook
176
star
66

kafka-junit

This library wraps Kafka's embedded test cluster, allowing you to more easily create and run integration tests using JUnit against a "real" kafka server running within the context of your tests. No need to stand up an external kafka cluster!
Java
167
star
67

booksum

Python
167
star
68

sfdx-lwc-jest

Run Jest against LWC components in SFDX workspace environment
JavaScript
162
star
69

hierarchicalContrastiveLearning

Python
149
star
70

ctrl-sum

Resources for the "CTRLsum: Towards Generic Controllable Text Summarization" paper
Python
146
star
71

cos-e

Commonsense Explanations Dataset and Code
Python
144
star
72

secure-filters

Anti-XSS Security Filters for EJS and More
JavaScript
138
star
73

metabadger

Prevent SSRF attacks on AWS EC2 via automated upgrades to the more secure Instance Metadata Service v2 (IMDSv2).
Python
129
star
74

dockerfile-image-update

A tool that helps you get security patches for Docker images into production as quickly as possible without breaking things
Java
127
star
75

Converse

Python
125
star
76

refocus

The Go-To Platform for Visualizing Service Health
JavaScript
125
star
77

CoMatch

Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization
Python
117
star
78

BOLAA

Python
114
star
79

fsnet

Python
111
star
80

rng-kbqa

Python
110
star
81

near-membrane

JavaScript Near Membrane Library that powers Lightning Locker Service
TypeScript
110
star
82

botsim

BotSIM - a data-efficient end-to-end Bot SIMulation toolkit for evaluation, diagnosis, and improvement of commercial chatbots
Jupyter Notebook
108
star
83

bazel-eclipse

This repo holds two IDE projects. One is the Eclipse Feature for developing Bazel projects in Eclipse. The Bazel Eclipse Feature supports importing, building, and testing Java projects that are built using the Bazel build system. The other is the Bazel Java Language Server, which is a build integration for IDEs such as VS Code.
Java
108
star
84

MUST

PyTorch code for MUST
Python
103
star
85

bro-sysmon

How to Zeek Sysmon Logs!
Zeek
100
star
86

Timbermill

A better logging service
Java
99
star
87

AuditNLG

AuditNLG: Auditing Generative AI Language Modeling for Trustworthiness
Python
97
star
88

eslint-plugin-lwc

Official ESLint rules for LWC
JavaScript
96
star
89

best

🏆 Delightful Benchmarking & Performance Testing
TypeScript
95
star
90

craft

CRAFT removes the language barrier to create Kubernetes Operators.
Go
93
star
91

eslint-config-lwc

Opinionated ESLint configurations for LWC projects
JavaScript
93
star
92

online_conformal

Methods for online conformal prediction.
Jupyter Notebook
90
star
93

lobster-pot

Scans every git push to your Github organisations to find unwanted secrets.
Go
88
star
94

ml4ir

Machine Learning for Information Retrieval
Jupyter Notebook
85
star
95

violet-conversations

Sophisticated Conversational Applications/Bots
JavaScript
84
star
96

apex-mockery

Lightweight mocking library in Apex
Apex
83
star
97

fast-influence-functions

Python
83
star
98

MoPro

MoPro: Webly Supervised Learning
Python
79
star
99

TaiChi

Open source library for few shot NLP
Python
79
star
100

helm-starter-istio

An Istio starter template for Helm
Shell
78
star