• Stars
    star
    3,232
  • Rank 13,276 (Top 0.3 %)
  • Language
    Python
  • License
    BSD 3-Clause "New...
  • Created almost 3 years ago
  • Updated about 2 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Merlion: A Machine Learning Framework for Time Series Intelligence
Logo

Merlion: A Machine Learning Library for Time Series

Table of Contents

  1. Introduction
  2. Comparison with Related Libraries
  3. Installation
  4. Documentation
  5. Getting Started
    1. Anomaly Detection
    2. Forecasting
  6. Evaluation and Benchmarking
  7. Technical Report and Citing Merlion

Introduction

Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processing model outputs, and evaluating model performance. It supports various time series learning tasks, including forecasting, anomaly detection, and change point detection for both univariate and multivariate time series. This library aims to provide engineers and researchers a one-stop solution to rapidly develop models for their specific time series needs, and benchmark them across multiple time series datasets.

Merlion's key features are

  • Standardized and easily extensible data loading & benchmarking for a wide range of forecasting and anomaly detection datasets. This includes transparent support for custom datasets.
  • A library of diverse models for anomaly detection, forecasting, and change point detection, all unified under a shared interface. Models include classic statistical methods, tree ensembles, and deep learning approaches. Advanced users may fully configure each model as desired.
  • Abstract DefaultDetector and DefaultForecaster models that are efficient, robustly achieve good performance, and provide a starting point for new users.
  • AutoML for automated hyperaparameter tuning and model selection.
  • Unified API for using a wide range of models to forecast with exogenous regressors.
  • Practical, industry-inspired post-processing rules for anomaly detectors that make anomaly scores more interpretable, while also reducing the number of false positives.
  • Easy-to-use ensembles that combine the outputs of multiple models to achieve more robust performance.
  • Flexible evaluation pipelines that simulate the live deployment & re-training of a model in production, and evaluate performance on both forecasting and anomaly detection.
  • Native support for visualizing model predictions, including with a clickable visual UI.
  • Distributed computation backend using PySpark, which can be used to serve time series applications at industrial scale.

Comparison with Related Libraries

The table below provides a visual overview of how Merlion's key features compare to other libraries for time series anomaly detection and/or forecasting.

Merlion Prophet Alibi Detect Kats darts statsmodels nixtla GluonTS RRCF STUMPY Greykite pmdarima
Univariate Forecasting βœ… βœ… βœ… βœ… βœ… βœ… βœ… βœ… βœ…
Multivariate Forecasting βœ… βœ… βœ… βœ… βœ… βœ…
Univariate Anomaly Detection βœ… βœ… βœ… βœ… βœ… βœ… βœ… βœ… βœ…
Multivariate Anomaly Detection βœ… βœ… βœ… βœ… βœ… βœ…
Pre Processing βœ… βœ… βœ… βœ… βœ… βœ… βœ… βœ…
Post Processing βœ… βœ…
AutoML βœ… βœ… βœ…
Ensembles βœ… βœ… βœ… βœ…
Benchmarking βœ… βœ… βœ… βœ… βœ…
Visualization βœ… βœ… βœ… βœ… βœ…

The following features are new in Merlion 2.0:

Merlion Prophet Alibi Detect Kats darts statsmodels nixtla GluonTS RRCF STUMPY Greykite pmdarima
Exogenous Regressors βœ… βœ… βœ… βœ… βœ… βœ…
Change Point Detection βœ… βœ… βœ… βœ… βœ…
Clickable Visual UI βœ…
Distributed Backend βœ… βœ…

Installation

Merlion consists of two sub-repos: merlion implements the library's core time series intelligence features, and ts_datasets provides standardized data loaders for multiple time series datasets. These loaders load time series as pandas.DataFrameΒ s with accompanying metadata.

You can install merlion from PyPI by calling pip install salesforce-merlion. You may install from source by cloning this repoand calling pip install Merlion/, or pip install -e Merlion/ to install in editable mode. You may install additional dependencies via pip install salesforce-merlion[all], or by calling pip install "Merlion/[all]" if installing from source. Individually, the optional dependencies include dashboard for a GUI dashboard, spark for a distributed computation backend with PySpark, and deep-learning for all deep learning models.

To install the data loading package ts_datasets, clone this repo and call pip install -e Merlion/ts_datasets/. This package must be installed in editable mode (i.e. with the -e flag) if you don't want to manually specify the root directory of every dataset when initializing its data loader.

Note the following external dependencies:

  1. Some of our forecasting models depend on OpenMP. If using conda, please conda install -c conda-forge lightgbm before installing our package. This will ensure that OpenMP is configured to work with the lightgbm package (one of our dependencies) in your conda environment. If using Mac, please install Homebrew and call brew install libomp so that the OpenMP libary is available for the model.

  2. Some of our anomaly detection models depend on the Java Development Kit (JDK). For Ubuntu, call sudo apt-get install openjdk-11-jdk. For Mac OS, install Homebrew and call brew tap adoptopenjdk/openjdk && brew install --cask adoptopenjdk11. Also ensure that java can be found on your PATH, and that the JAVA_HOME environment variable is set.

Documentation

For example code and an introduction to Merlion, see the Jupyter notebooks in examples, and the guided walkthrough here. You may find detailed API documentation (including the example code) here. The technical report outlines Merlion's overall architecture and presents experimental results on time series anomaly detection & forecasting for both univariate and multivariate time series.

Getting Started

The easiest way to get started is to use the GUI web-based dashboard. This dashboard provides a great way to quickly experiment with many models on your own custom datasets. To use it, install Merlion with the optional dashboard dependency (i.e. pip install salesforce-merlion[dashboard]), and call python -m merlion.dashboard from the command line. You can view the dashboard at http://localhost:8050. Below, we show some screenshots of the dashboard for both anomaly detection and forecasting.

anomaly dashboard

forecast dashboard

To help you get started with using Merlion in your own code, we provide below some minimal examples using Merlion default models for both anomaly detection and forecasting.

Anomaly Detection

Here, we show the code to replicate the results from the anomaly detection dashboard above. We begin by importing Merlion’s TimeSeries class and the data loader for the Numenta Anomaly Benchmark NAB. We can then divide a specific time series from this dataset into training and testing splits.

from merlion.utils import TimeSeries
from ts_datasets.anomaly import NAB

# Data loader returns pandas DataFrames, which we convert to Merlion TimeSeries
time_series, metadata = NAB(subset="realKnownCause")[3]
train_data = TimeSeries.from_pd(time_series[metadata.trainval])
test_data = TimeSeries.from_pd(time_series[~metadata.trainval])
test_labels = TimeSeries.from_pd(metadata.anomaly[~metadata.trainval])

We can then initialize and train Merlion’s DefaultDetector, which is an anomaly detection model that balances performance with efficiency. We also obtain its predictions on the test split.

from merlion.models.defaults import DefaultDetectorConfig, DefaultDetector
model = DefaultDetector(DefaultDetectorConfig())
model.train(train_data=train_data)
test_pred = model.get_anomaly_label(time_series=test_data)

Next, we visualize the model's predictions.

from merlion.plot import plot_anoms
import matplotlib.pyplot as plt
fig, ax = model.plot_anomaly(time_series=test_data)
plot_anoms(ax=ax, anomaly_labels=test_labels)
plt.show()

anomaly figure

Finally, we can quantitatively evaluate the model. The precision and recall come from the fact that the model fired 3 alarms, with 2 true positives, 1 false negative, and 1 false positive. We also evaluate the mean time the model took to detect each anomaly that it correctly detected.

from merlion.evaluate.anomaly import TSADMetric
p = TSADMetric.Precision.value(ground_truth=test_labels, predict=test_pred)
r = TSADMetric.Recall.value(ground_truth=test_labels, predict=test_pred)
f1 = TSADMetric.F1.value(ground_truth=test_labels, predict=test_pred)
mttd = TSADMetric.MeanTimeToDetect.value(ground_truth=test_labels, predict=test_pred)
print(f"Precision: {p:.4f}, Recall: {r:.4f}, F1: {f1:.4f}\n"
      f"Mean Time To Detect: {mttd}")
Precision: 0.6667, Recall: 0.6667, F1: 0.6667
Mean Time To Detect: 1 days 10:22:30

Forecasting

Here, we show the code to replicate the results from the forecasting dashboard above. We begin by importing Merlion’s TimeSeries class and the data loader for the M4 dataset. We can then divide a specific time series from this dataset into training and testing splits.

from merlion.utils import TimeSeries
from ts_datasets.forecast import M4

# Data loader returns pandas DataFrames, which we convert to Merlion TimeSeries
time_series, metadata = M4(subset="Hourly")[0]
train_data = TimeSeries.from_pd(time_series[metadata.trainval])
test_data = TimeSeries.from_pd(time_series[~metadata.trainval])

We can then initialize and train Merlion’s DefaultForecaster, which is an forecasting model that balances performance with efficiency. We also obtain its predictions on the test split.

from merlion.models.defaults import DefaultForecasterConfig, DefaultForecaster
model = DefaultForecaster(DefaultForecasterConfig())
model.train(train_data=train_data)
test_pred, test_err = model.forecast(time_stamps=test_data.time_stamps)

Next, we visualize the model’s predictions.

import matplotlib.pyplot as plt
fig, ax = model.plot_forecast(time_series=test_data, plot_forecast_uncertainty=True)
plt.show()

forecast figure

Finally, we quantitatively evaluate the model. sMAPE measures the error of the prediction on a scale of 0 to 100 (lower is better), while MSIS evaluates the quality of the 95% confidence band on a scale of 0 to 100 (lower is better).

# Evaluate the model's predictions quantitatively
from scipy.stats import norm
from merlion.evaluate.forecast import ForecastMetric

# Compute the sMAPE of the predictions (0 to 100, smaller is better)
smape = ForecastMetric.sMAPE.value(ground_truth=test_data, predict=test_pred)

# Compute the MSIS of the model's 95% confidence interval (0 to 100, smaller is better)
lb = TimeSeries.from_pd(test_pred.to_pd() + norm.ppf(0.025) * test_err.to_pd().values)
ub = TimeSeries.from_pd(test_pred.to_pd() + norm.ppf(0.975) * test_err.to_pd().values)
msis = ForecastMetric.MSIS.value(ground_truth=test_data, predict=test_pred,
                                 insample=train_data, lb=lb, ub=ub)
print(f"sMAPE: {smape:.4f}, MSIS: {msis:.4f}")
sMAPE: 4.1944, MSIS: 18.9331

Evaluation and Benchmarking

One of Merlion's key features is an evaluation pipeline that simulates the live deployment of a model on historical data. This enables you to compare models on the datasets relevant to them, under the conditions that they may encounter in a production environment. Our evaluation pipeline proceeds as follows:

  1. Train an initial model on recent historical training data (designated as the training split of the time series)
  2. At a regular interval (e.g. once per day), retrain the entire model on the most recent data. This can be either the entire history of the time series, or a more limited window (e.g. 4 weeks).
  3. Obtain the model's predictions (anomaly scores or forecasts) for the time series values that occur between re-trainings. You may customize whether this should be done in batch (predicting all values at once), streaming (updating the model's internal state after each data point without fully re-training it), or some intermediate cadence.
  4. Compare the model's predictions against the ground truth (labeled anomalies for anomaly detection, or the actual time series values for forecasting), and report quantitative evaluation metrics.

We provide scripts that allow you to use this pipeline to evaluate arbitrary models on arbitrary datasets. For example, invoking

python benchmark_anomaly.py --dataset NAB_realAWSCloudwatch --model IsolationForest --retrain_freq 1d

will evaluate the anomaly detection performance of the IsolationForest (retrained once a day) on the "realAWSCloudwatch" subset of the NAB dataset. Similarly, invoking

python benchmark_forecast.py --dataset M4_Hourly --model ETS

will evaluate the batch forecasting performance (i.e. no retraining) of ETS on the "Hourly" subset of the M4 dataset. You can find the results produced by running these scripts in the Experiments section of the technical report.

Technical Report and Citing Merlion

You can find more details in our technical report: https://arxiv.org/abs/2109.09265

If you're using Merlion in your research or applications, please cite using this BibTeX:

@article{bhatnagar2021merlion,
      title={Merlion: A Machine Learning Library for Time Series},
      author={Aadyot Bhatnagar and Paul Kassianik and Chenghao Liu and Tian Lan and Wenzhuo Yang
              and Rowan Cassius and Doyen Sahoo and Devansh Arpit and Sri Subramanian and Gerald Woo
              and Amrita Saha and Arun Kumar Jagota and Gokulakrishnan Gopalakrishnan and Manpreet Singh
              and K C Krithika and Sukumar Maddineni and Daeki Cho and Bo Zong and Yingbo Zhou
              and Caiming Xiong and Silvio Savarese and Steven Hoi and Huan Wang},
      year={2021},
      eprint={2109.09265},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

More Repositories

1

LAVIS

LAVIS - A One-stop Library for Language-Vision Intelligence
Jupyter Notebook
8,226
star
2

CodeGen

CodeGen is a family of open-source model for program synthesis. Trained on TPU-v4. Competitive with OpenAI Codex.
Python
4,594
star
3

BLIP

PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
Jupyter Notebook
3,879
star
4

akita

πŸš€ State Management Tailored-Made for JS Applications
TypeScript
3,442
star
5

ja3

JA3 is a standard for creating SSL client fingerprints in an easy to produce and shareable way.
Python
2,502
star
6

CodeT5

Home of CodeT5: Open Code LLMs for Code Understanding and Generation
Python
2,437
star
7

decaNLP

The Natural Language Decathlon: A Multitask Challenge for NLP
Python
2,301
star
8

TransmogrifAI

TransmogrifAI (pronounced trΔƒns-mŏgˈrΙ™-fΔ«) is an AutoML library for building modular, reusable, strongly typed machine learning workflows on Apache Spark with minimal hand-tuning
Scala
2,227
star
9

policy_sentry

IAM Least Privilege Policy Generator
Python
1,938
star
10

awd-lstm-lm

LSTM and QRNN Language Model Toolkit for PyTorch
Python
1,900
star
11

cloudsplaining

Cloudsplaining is an AWS IAM Security Assessment tool that identifies violations of least privilege and generates a risk-prioritized report.
JavaScript
1,865
star
12

ctrl

Conditional Transformer Language Model for Controllable Generation
Python
1,766
star
13

lwc

⚑️ LWC - A Blazing Fast, Enterprise-Grade Web Components Foundation
JavaScript
1,537
star
14

WikiSQL

A large annotated semantic parsing corpus for developing natural language interfaces.
HTML
1,520
star
15

sloop

Kubernetes History Visualization
Go
1,396
star
16

CodeTF

CodeTF: One-stop Transformer Library for State-of-the-art Code LLM
Python
1,375
star
17

ALBEF

Code for ALBEF: a new vision-language pre-training method
Python
1,276
star
18

pytorch-qrnn

PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM
Python
1,255
star
19

ai-economist

Foundation is a flexible, modular, and composable framework to model socio-economic behaviors and dynamics with both agents and governments. This framework can be used in conjunction with reinforcement learning to learn optimal economic policies,Β as done by the AI Economist (https://www.einstein.ai/the-ai-economist).
Python
964
star
20

jarm

Python
914
star
21

design-system-react

Salesforce Lightning Design System for React
JavaScript
896
star
22

tough-cookie

RFC6265 Cookies and CookieJar for Node.js
TypeScript
858
star
23

reactive-grpc

Reactive stubs for gRPC
Java
814
star
24

OmniXAI

OmniXAI: A Library for eXplainable AI
Jupyter Notebook
782
star
25

xgen

Salesforce open-source LLMs with 8k sequence length.
Python
704
star
26

vulnreport

Open-source pentesting management and automation platform by Salesforce Product Security
HTML
593
star
27

UniControl

Unified Controllable Visual Generation Model
Python
577
star
28

hassh

HASSH is a network fingerprinting standard which can be used to identify specific Client and Server SSH implementations. The fingerprints can be easily stored, searched and shared in the form of a small MD5 fingerprint.
Python
525
star
29

progen

Official release of the ProGen models
Python
518
star
30

Argus

Time series monitoring and alerting platform.
Java
501
star
31

base-components-recipes

A collection of base component recipes for Lightning Web Components on Salesforce Platform
JavaScript
496
star
32

matchbox

Write PyTorch code at the level of individual examples, then run it efficiently on minibatches.
Python
488
star
33

PCL

PyTorch code for "Prototypical Contrastive Learning of Unsupervised Representations"
Python
483
star
34

cove

Python
470
star
35

CodeRL

This is the official code for the paper CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning (NeurIPS22).
Python
465
star
36

DialogStudio

DialogStudio: Towards Richest and Most Diverse Unified Dataset Collection and Instruction-Aware Models for Conversational AI
Python
431
star
37

warp-drive

Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning Framework on a GPU (JMLR 2022)
Python
429
star
38

observable-membrane

A Javascript Membrane implementation using Proxies to observe mutation on an object graph
TypeScript
368
star
39

PyRCA

PyRCA: A Python Machine Learning Library for Root Cause Analysis
Python
367
star
40

DeepTime

PyTorch code for Learning Deep Time-index Models for Time Series Forecasting (ICML 2023)
Python
322
star
41

ULIP

Python
316
star
42

logai

LogAI - An open-source library for log analytics and intelligence
Python
298
star
43

MultiHopKG

Multi-hop knowledge graph reasoning learned via policy gradient with reward shaping and action dropout
Jupyter Notebook
290
star
44

CodeGen2

CodeGen2 models for program synthesis
Python
269
star
45

provis

Official code repository of "BERTology Meets Biology: Interpreting Attention in Protein Language Models."
Python
269
star
46

jaxformer

Minimal library to train LLMs on TPU in JAX with pjit().
Python
255
star
47

EDICT

Jupyter Notebook
247
star
48

causalai

Salesforce CausalAI Library: A Fast and Scalable framework for Causal Analysis of Time Series and Tabular Data
Jupyter Notebook
223
star
49

ETSformer

PyTorch code for ETSformer: Exponential Smoothing Transformers for Time-series Forecasting
Python
221
star
50

themify

πŸ‘¨β€πŸŽ¨ CSS Themes Made Easy. A robust, opinionated solution to manage themes in your web application
TypeScript
216
star
51

rules_spring

Bazel rule for building Spring Boot apps as a deployable jar
Starlark
215
star
52

simpletod

Official repository for "SimpleTOD: A Simple Language Model for Task-Oriented Dialogue"
Python
212
star
53

TabularSemanticParsing

Translating natural language questions to a structured query language
Jupyter Notebook
210
star
54

grpc-java-contrib

Useful extensions for the grpc-java library
Java
208
star
55

GeDi

GeDi: Generative Discriminator Guided Sequence Generation
Python
207
star
56

aws-allowlister

Automatically compile an AWS Service Control Policy that ONLY allows AWS services that are compliant with your preferred compliance frameworks.
Python
207
star
57

mirus

Mirus is a cross data-center data replication tool for Apache Kafka
Java
200
star
58

generic-sidecar-injector

A generic framework for injecting sidecars and related configuration in Kubernetes using Mutating Webhook Admission Controllers
Go
200
star
59

CoST

PyTorch code for CoST: Contrastive Learning of Disentangled Seasonal-Trend Representations for Time Series Forecasting (ICLR 2022)
Python
196
star
60

factCC

Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper
Python
192
star
61

runway-browser

Interactive visualization framework for Runway models of distributed systems
JavaScript
188
star
62

glad

Global-Locally Self-Attentive Dialogue State Tracker
Python
186
star
63

ALPRO

Align and Prompt: Video-and-Language Pre-training with Entity Prompts
Python
177
star
64

densecap

Jupyter Notebook
176
star
65

cloud-guardrails

Rapidly apply hundreds of security controls in Azure
HCL
174
star
66

booksum

Python
167
star
67

kafka-junit

This library wraps Kafka's embedded test cluster, allowing you to more easily create and run integration tests using JUnit against a "real" kafka server running within the context of your tests. No need to stand up an external kafka cluster!
Java
166
star
68

sfdx-lwc-jest

Run Jest against LWC components in SFDX workspace environment
JavaScript
156
star
69

ctrl-sum

Resources for the "CTRLsum: Towards Generic Controllable Text Summarization" paper
Python
144
star
70

cos-e

Commonsense Explanations Dataset and Code
Python
143
star
71

hierarchicalContrastiveLearning

Python
140
star
72

secure-filters

Anti-XSS Security Filters for EJS and More
JavaScript
138
star
73

metabadger

Prevent SSRF attacks on AWS EC2 via automated upgrades to the more secure Instance Metadata Service v2 (IMDSv2).
Python
129
star
74

dockerfile-image-update

A tool that helps you get security patches for Docker images into production as quickly as possible without breaking things
Java
127
star
75

Converse

Python
125
star
76

refocus

The Go-To Platform for Visualizing Service Health
JavaScript
125
star
77

CoMatch

Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization
Python
117
star
78

BOLAA

Python
114
star
79

bazel-eclipse

This repo holds two IDE projects. One is the Eclipse Feature for developing Bazel projects in Eclipse. The Bazel Eclipse Feature supports importing, building, and testing Java projects that are built using the Bazel build system. The other is the Bazel Java Language Server, which is a build integration for IDEs such as VS Code.
Java
108
star
80

botsim

BotSIM - a data-efficient end-to-end Bot SIMulation toolkit for evaluation, diagnosis, and improvement of commercial chatbots
Jupyter Notebook
108
star
81

near-membrane

JavaScript Near Membrane Library that powers Lightning Locker Service
TypeScript
107
star
82

rng-kbqa

Python
105
star
83

MUST

PyTorch code for MUST
Python
103
star
84

fsnet

Python
101
star
85

bro-sysmon

How to Zeek Sysmon Logs!
Zeek
101
star
86

Timbermill

A better logging service
Java
99
star
87

best

πŸ† Delightful Benchmarking & Performance Testing
TypeScript
95
star
88

eslint-config-lwc

Opinionated ESLint configurations for LWC projects
JavaScript
93
star
89

craft

CRAFT removes the language barrier to create Kubernetes Operators.
Go
91
star
90

AuditNLG

AuditNLG: Auditing Generative AI Language Modeling for Trustworthiness
Python
90
star
91

online_conformal

Methods for online conformal prediction.
Jupyter Notebook
90
star
92

lobster-pot

Scans every git push to your Github organisations to find unwanted secrets.
Go
88
star
93

violet-conversations

Sophisticated Conversational Applications/Bots
JavaScript
84
star
94

ml4ir

Machine Learning for Information Retrieval
Jupyter Notebook
84
star
95

apex-mockery

Lightweight mocking library in Apex
Apex
83
star
96

fast-influence-functions

Python
80
star
97

MoPro

MoPro: Webly Supervised Learning
Python
79
star
98

TaiChi

Open source library for few shot NLP
Python
79
star
99

helm-starter-istio

An Istio starter template for Helm
Shell
78
star
100

QAConv

This repository maintains the QAConv dataset, a question-answering dataset on informative conversations including business emails, panel discussions, and work channels.
Python
77
star