• Stars
    star
    192
  • Rank 202,019 (Top 4 %)
  • Language
    Python
  • License
    BSD 3-Clause "New...
  • Created about 5 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Evaluating the Factual Consistency of Abstractive Text Summarization

Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher

Introduction

Currently used metrics for assessing summarization algorithms do not account for whether summaries are factually consistent with source documents. We propose a weakly-supervised, model-based approach for verifying factual consistency and identifying conflicts between source documents and a generated summary. Training data is generated by applying a series of rule-based transformations to the sentences of source documents. The factual consistency model is then trained jointly for three tasks:

  1. identify whether sentences remain factually consistent after transformation,
  2. extract a span in the source documents to support the consistency prediction,
  3. extract a span in the summary sentence that is inconsistent if one exists. Transferring this model to summaries generated by several state-of-the art models reveals that this highly scalable approach substantially outperforms previous models, including those trained with strong supervision using standard datasets for natural language inference and fact checking. Additionally, human evaluation shows that the auxiliary span extraction tasks provide useful assistance in the process of verifying factual consistency.

Paper link: https://arxiv.org/abs/1910.12840

Table of Contents

  1. Updates
  2. Citation
  3. License
  4. Usage
  5. Get Involved

Updates

1/27/2020

Updated manually annotated data files - fixed filepaths in misaligned examples.

Updated model checkpoint files - recomputed evaluation metrics for fixed examples.

Citation

@article{kryscinskiFactCC2019,
  author    = {Wojciech Kry{\'s}ci{\'n}ski and Bryan McCann and Caiming Xiong and Richard Socher},
  title     = {Evaluating the Factual Consistency of Abstractive Text Summarization},
  journal   = {arXiv preprint arXiv:1910.12840},
  year      = {2019},
}

License

The code is released under the BSD-3 License (see LICENSE.txt for details), but we also ask that users respect the following:

This software should not be used to promote or profit from violence, hate, and division, environmental destruction, abuse of human rights, or the destruction of people's physical and mental health.

Usage

Code repository uses Python 3. Prior to running any scripts please make sure to install required Python packages listed in the requirements.txt file.

Example call: pip3 install -r requirements.txt

Training and Evaluation Datasets

Generated training data can be found here.

Manually annotated validation and test data can be found here.

Both generated and manually annotated datasets require pairing with the original CNN/DailyMail articles.

To recreate the datasets follow the instructions:

  1. Download CNN Stories and Daily Mail Stories from https://cs.nyu.edu/~kcho/DMQA/
  2. Create a cnndm directory and unpack downloaded files into the directory
  3. Download and unpack FactCC data (do not rename directory)
  4. Run the pair_data.py script to pair the data with original articles

Example call:

python3 data_pairing/pair_data.py <dir-with-factcc-data> <dir-with-stories>

Generating Data

Synthetic training data can be generated using code available in the data_generation directory.

The data generation script expects the source documents input as one jsonl file, where each source document is embedded in a separate json object. The json object is required to contain an id key which stores an example id (uniqness is not required), and a text field that stores the text of the source document.

Certain transformations rely on NER tagging, thus for best results use source documents with original (proper) casing.

The following claim augmentations (transformations) are available:

  • backtranslation - Paraphrasing claim via backtranslation (requires Google Translate API key; costs apply)
  • pronoun_swap - Swapping a random pronoun in the claim
  • date_swap - Swapping random date/time found in the claim with one present in the source article
  • number_swap - Swapping random number found in the claim with one present in the source article
  • entity_swap - Swapping random entity name found in the claim with one present in the source article
  • negation - Negating meaning of the claim
  • noise - Injecting noise into the claim sentence

For a detailed description of available transformations please refer to Section 3.1 in the paper.

To authenticate with the Google Cloud API follow these instructions.

Example call:

python3 data_generation/create_data.py <source-data-file> [--augmentations list-of-augmentations]

Model Code

FactCC and FactCCX models can be trained or initialized from a checkpoint using code available in the modeling directory.

Quickstart training, fine-tuning, and evaluation scripts are shared in the scripts directory. Before use make sure to update *_PATH variables with appropriate, absolute paths.

To customize training or evaluation settings please refer to the flags in the run.py file.

To utilize Weights&Biases dashboards login to the service using the following command: wandb login <API KEY>.

Trained FactCC model checkpoint can be found here.

Trained FactCCX model checkpoint can be found here.

IMPORTANT: Due to data pre-processing, the first run of training or evaluation code on a large dataset can take up to a few hours before the actual procedure starts.

Running on other data

To run pretrained FactCC or FactCCX models on your data follow the instruction:

  1. Download pre-trained model checkpoint, linked above
  2. Prepare your data in jsonl format. Each example should be a separate json object with id, text, claim keys representing example id, source document, and claim sentence accordingly. Name file as data-dev.jsonl
  3. Update corresponding *-eval.sh script

Get Involved

Please create a GitHub issue if you have any questions, suggestions, requests or bug-reports. We welcome PRs!

More Repositories

1

LAVIS

LAVIS - A One-stop Library for Language-Vision Intelligence
Jupyter Notebook
9,587
star
2

CodeGen

CodeGen is a family of open-source model for program synthesis. Trained on TPU-v4. Competitive with OpenAI Codex.
Python
4,594
star
3

BLIP

PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
Jupyter Notebook
3,879
star
4

akita

🚀 State Management Tailored-Made for JS Applications
TypeScript
3,442
star
5

Merlion

Merlion: A Machine Learning Framework for Time Series Intelligence
Python
3,355
star
6

ja3

JA3 is a standard for creating SSL client fingerprints in an easy to produce and shareable way.
Python
2,666
star
7

CodeT5

Home of CodeT5: Open Code LLMs for Code Understanding and Generation
Python
2,437
star
8

decaNLP

The Natural Language Decathlon: A Multitask Challenge for NLP
Python
2,301
star
9

TransmogrifAI

TransmogrifAI (pronounced trăns-mŏgˈrə-fī) is an AutoML library for building modular, reusable, strongly typed machine learning workflows on Apache Spark with minimal hand-tuning
Scala
2,234
star
10

policy_sentry

IAM Least Privilege Policy Generator
Python
1,986
star
11

cloudsplaining

Cloudsplaining is an AWS IAM Security Assessment tool that identifies violations of least privilege and generates a risk-prioritized report.
JavaScript
1,972
star
12

awd-lstm-lm

LSTM and QRNN Language Model Toolkit for PyTorch
Python
1,900
star
13

ctrl

Conditional Transformer Language Model for Controllable Generation
Python
1,766
star
14

lwc

⚡️ LWC - A Blazing Fast, Enterprise-Grade Web Components Foundation
JavaScript
1,619
star
15

WikiSQL

A large annotated semantic parsing corpus for developing natural language interfaces.
HTML
1,606
star
16

sloop

Kubernetes History Visualization
Go
1,457
star
17

CodeTF

CodeTF: One-stop Transformer Library for State-of-the-art Code LLM
Python
1,375
star
18

ALBEF

Code for ALBEF: a new vision-language pre-training method
Python
1,276
star
19

pytorch-qrnn

PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM
Python
1,255
star
20

ai-economist

Foundation is a flexible, modular, and composable framework to model socio-economic behaviors and dynamics with both agents and governments. This framework can be used in conjunction with reinforcement learning to learn optimal economic policies, as done by the AI Economist (https://www.einstein.ai/the-ai-economist).
Python
964
star
21

design-system-react

Salesforce Lightning Design System for React
JavaScript
919
star
22

jarm

Python
914
star
23

tough-cookie

RFC6265 Cookies and CookieJar for Node.js
TypeScript
858
star
24

OmniXAI

OmniXAI: A Library for eXplainable AI
Jupyter Notebook
853
star
25

reactive-grpc

Reactive stubs for gRPC
Java
826
star
26

xgen

Salesforce open-source LLMs with 8k sequence length.
Python
717
star
27

UniControl

Unified Controllable Visual Generation Model
Python
614
star
28

vulnreport

Open-source pentesting management and automation platform by Salesforce Product Security
HTML
593
star
29

hassh

HASSH is a network fingerprinting standard which can be used to identify specific Client and Server SSH implementations. The fingerprints can be easily stored, searched and shared in the form of a small MD5 fingerprint.
Python
529
star
30

progen

Official release of the ProGen models
Python
518
star
31

base-components-recipes

A collection of base component recipes for Lightning Web Components on Salesforce Platform
JavaScript
509
star
32

Argus

Time series monitoring and alerting platform.
Java
501
star
33

CodeRL

This is the official code for the paper CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning (NeurIPS22).
Python
488
star
34

matchbox

Write PyTorch code at the level of individual examples, then run it efficiently on minibatches.
Python
488
star
35

PCL

PyTorch code for "Prototypical Contrastive Learning of Unsupervised Representations"
Python
483
star
36

DialogStudio

DialogStudio: Towards Richest and Most Diverse Unified Dataset Collection and Instruction-Aware Models for Conversational AI
Python
472
star
37

cove

Python
470
star
38

warp-drive

Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning Framework on a GPU (JMLR 2022)
Python
452
star
39

PyRCA

PyRCA: A Python Machine Learning Library for Root Cause Analysis
Python
408
star
40

observable-membrane

A Javascript Membrane implementation using Proxies to observe mutation on an object graph
TypeScript
368
star
41

DeepTime

PyTorch code for Learning Deep Time-index Models for Time Series Forecasting (ICML 2023)
Python
351
star
42

ULIP

Python
316
star
43

MultiHopKG

Multi-hop knowledge graph reasoning learned via policy gradient with reward shaping and action dropout
Jupyter Notebook
300
star
44

logai

LogAI - An open-source library for log analytics and intelligence
Python
298
star
45

CodeGen2

CodeGen2 models for program synthesis
Python
272
star
46

provis

Official code repository of "BERTology Meets Biology: Interpreting Attention in Protein Language Models."
Python
269
star
47

causalai

Salesforce CausalAI Library: A Fast and Scalable framework for Causal Analysis of Time Series and Tabular Data
Jupyter Notebook
256
star
48

jaxformer

Minimal library to train LLMs on TPU in JAX with pjit().
Python
255
star
49

EDICT

Jupyter Notebook
247
star
50

rules_spring

Bazel rule for building Spring Boot apps as a deployable jar
Starlark
224
star
51

ETSformer

PyTorch code for ETSformer: Exponential Smoothing Transformers for Time-series Forecasting
Python
221
star
52

TabularSemanticParsing

Translating natural language questions to a structured query language
Jupyter Notebook
220
star
53

themify

👨‍🎨 CSS Themes Made Easy. A robust, opinionated solution to manage themes in your web application
TypeScript
216
star
54

simpletod

Official repository for "SimpleTOD: A Simple Language Model for Task-Oriented Dialogue"
Python
212
star
55

grpc-java-contrib

Useful extensions for the grpc-java library
Java
208
star
56

GeDi

GeDi: Generative Discriminator Guided Sequence Generation
Python
207
star
57

aws-allowlister

Automatically compile an AWS Service Control Policy that ONLY allows AWS services that are compliant with your preferred compliance frameworks.
Python
207
star
58

generic-sidecar-injector

A generic framework for injecting sidecars and related configuration in Kubernetes using Mutating Webhook Admission Controllers
Go
203
star
59

mirus

Mirus is a cross data-center data replication tool for Apache Kafka
Java
201
star
60

CoST

PyTorch code for CoST: Contrastive Learning of Disentangled Seasonal-Trend Representations for Time Series Forecasting (ICLR 2022)
Python
196
star
61

runway-browser

Interactive visualization framework for Runway models of distributed systems
JavaScript
188
star
62

glad

Global-Locally Self-Attentive Dialogue State Tracker
Python
186
star
63

cloud-guardrails

Rapidly apply hundreds of security controls in Azure
HCL
181
star
64

ALPRO

Align and Prompt: Video-and-Language Pre-training with Entity Prompts
Python
177
star
65

densecap

Jupyter Notebook
176
star
66

kafka-junit

This library wraps Kafka's embedded test cluster, allowing you to more easily create and run integration tests using JUnit against a "real" kafka server running within the context of your tests. No need to stand up an external kafka cluster!
Java
167
star
67

booksum

Python
167
star
68

sfdx-lwc-jest

Run Jest against LWC components in SFDX workspace environment
JavaScript
162
star
69

hierarchicalContrastiveLearning

Python
149
star
70

ctrl-sum

Resources for the "CTRLsum: Towards Generic Controllable Text Summarization" paper
Python
146
star
71

cos-e

Commonsense Explanations Dataset and Code
Python
144
star
72

secure-filters

Anti-XSS Security Filters for EJS and More
JavaScript
138
star
73

metabadger

Prevent SSRF attacks on AWS EC2 via automated upgrades to the more secure Instance Metadata Service v2 (IMDSv2).
Python
129
star
74

dockerfile-image-update

A tool that helps you get security patches for Docker images into production as quickly as possible without breaking things
Java
127
star
75

Converse

Python
125
star
76

refocus

The Go-To Platform for Visualizing Service Health
JavaScript
125
star
77

CoMatch

Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization
Python
117
star
78

BOLAA

Python
114
star
79

fsnet

Python
111
star
80

rng-kbqa

Python
110
star
81

near-membrane

JavaScript Near Membrane Library that powers Lightning Locker Service
TypeScript
110
star
82

botsim

BotSIM - a data-efficient end-to-end Bot SIMulation toolkit for evaluation, diagnosis, and improvement of commercial chatbots
Jupyter Notebook
108
star
83

bazel-eclipse

This repo holds two IDE projects. One is the Eclipse Feature for developing Bazel projects in Eclipse. The Bazel Eclipse Feature supports importing, building, and testing Java projects that are built using the Bazel build system. The other is the Bazel Java Language Server, which is a build integration for IDEs such as VS Code.
Java
108
star
84

MUST

PyTorch code for MUST
Python
103
star
85

bro-sysmon

How to Zeek Sysmon Logs!
Zeek
100
star
86

Timbermill

A better logging service
Java
99
star
87

AuditNLG

AuditNLG: Auditing Generative AI Language Modeling for Trustworthiness
Python
97
star
88

eslint-plugin-lwc

Official ESLint rules for LWC
JavaScript
96
star
89

best

🏆 Delightful Benchmarking & Performance Testing
TypeScript
95
star
90

craft

CRAFT removes the language barrier to create Kubernetes Operators.
Go
93
star
91

eslint-config-lwc

Opinionated ESLint configurations for LWC projects
JavaScript
93
star
92

online_conformal

Methods for online conformal prediction.
Jupyter Notebook
90
star
93

lobster-pot

Scans every git push to your Github organisations to find unwanted secrets.
Go
88
star
94

ml4ir

Machine Learning for Information Retrieval
Jupyter Notebook
85
star
95

violet-conversations

Sophisticated Conversational Applications/Bots
JavaScript
84
star
96

apex-mockery

Lightweight mocking library in Apex
Apex
83
star
97

fast-influence-functions

Python
83
star
98

MoPro

MoPro: Webly Supervised Learning
Python
79
star
99

TaiChi

Open source library for few shot NLP
Python
79
star
100

helm-starter-istio

An Istio starter template for Helm
Shell
78
star