• Stars
    star
    135
  • Rank 269,297 (Top 6 %)
  • Language
    Python
  • License
    MIT License
  • Created over 3 years ago
  • Updated 11 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Code for Text Prior Guided Scene Text Image Super-Resolution (TIP 2023)

Text Prior Guided Scene Text Image Super-Resolution (TIP 2023)

https://arxiv.org/abs/2106.15368

Jianqi Ma, Shi Guo, Lei Zhang
Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

Recovering TextZoom samples

TPGSR visualization

Environment:

python pytorch cuda numpy MIT

Other possible python packages like pyyaml, cv2, Pillow and imgaug

Main idea

Single stage with loss

Multi-stage version

Configure your training

Download the pretrained recognizer from:

Aster: https://github.com/ayumiymk/aster.pytorch  
MORAN:  https://github.com/Canjie-Luo/MORAN_v2  
CRNN: https://github.com/meijieru/crnn.pytorch

Unzip the codes and walk into the 'TPGSR_ROOT/', place the pretrained weights from recognizer in 'TPGSR_ROOT/'.

Download the TextZoom dataset:

https://github.com/JasonBoy1/TextZoom

Train the corresponding model (e.g. TPGSR-TSRN):

chmod a+x train_TPGSR-TSRN.sh
./train_TPGSR-TSRN.sh
or
python3 main.py --arch="tsrn_tl_cascade" \       # The architecture
                --batch_size=48 \                # The batch size
                --STN \                          # Using STN net for alignment
		--mask \                         # Using the contour mask
		--use_distill \                  # Using the TP loss
		--gradient \                     # Using the Gradient Prior Loss
		--sr_share \                     # Sharing weights for SR Module
		--stu_iter=1 \                   # The number of interations in multi-stage version
		--vis_dir='vis_TPGSR-TSRN' \     # The checkpoint directory

Run the test-prefixed shell to test the corresponding model.

Adding '--go_test' in the shell file

Cite this paper:

@article{ma2021text,
title={Text Prior Guided Scene Text Image Super-resolution},
author={Ma, Jianqi and Guo, Shi and Zhang, Lei},
journal={IEEE Transactions on Image Processing},
year={2023}
}