• Stars
    star
    246
  • Rank 164,726 (Top 4 %)
  • Language OpenEdge ABL
  • License
    MIT License
  • Created almost 5 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

gym-collision-avoidance

Updates:

  • 2023-04-28: Updated to be compatible with Python 3.10 and tensorflow 2. Corresponding v0.0.3 available on pypi as well, if you do not intend to modify the source code (python -m pip install gym-collision-avoidance)

Agents spelling ``CADRL''

This is the code associated with the following publications:

Journal Version: M. Everett, Y. Chen, and J. P. How, "Collision Avoidance in Pedestrian-Rich Environments with Deep Reinforcement Learning", IEEE Access Vol. 9, 2021, pp. 10357-10377. 10.1109/ACCESS.2021.3050338, Arxiv PDF

Conference Version: M. Everett, Y. Chen, and J. P. How, "Motion Planning Among Dynamic, Decision-Making Agents with Deep Reinforcement Learning", IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018. Arxiv PDF, Link to Video

This repo also contains the trained policy for the SA-CADRL paper (referred to as CADRL here) from the proceeding paper: Y. Chen, M. Everett, M. Liu, and J. P. How. “Socially Aware Motion Planning with Deep Reinforcement Learning.” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, BC, Canada, Sept. 2017. Arxiv PDF

If you're looking to train our GA3C-CADRL policy, please see this repo instead.


About the Code

Please see the documentation!

If you find this code useful, please consider citing:

@inproceedings{Everett18_IROS,
  address = {Madrid, Spain},
  author = {Everett, Michael and Chen, Yu Fan and How, Jonathan P.},
  booktitle = {IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  date-modified = {2018-10-03 06:18:08 -0400},
  month = sep,
  title = {Motion Planning Among Dynamic, Decision-Making Agents with Deep Reinforcement Learning},
  year = {2018},
  url = {https://arxiv.org/pdf/1805.01956.pdf},
  bdsk-url-1 = {https://arxiv.org/pdf/1805.01956.pdf}
}

or

@article{everett2021collision,
  title={Collision avoidance in pedestrian-rich environments with deep reinforcement learning},
  author={Everett, Michael and Chen, Yu Fan and How, Jonathan P},
  journal={IEEE Access},
  volume={9},
  pages={10357--10377},
  year={2021},
  publisher={IEEE}
}

More Repositories

1

faster

3D Trajectory Planner in Unknown Environments
C++
949
star
2

cadrl_ros

ROS package for dynamic obstacle avoidance for ground robots trained with deep RL
Python
572
star
3

mader

Trajectory Planner in Multi-Agent and Dynamic Environments
C++
479
star
4

clipper

graph-theoretic framework for robust pairwise data association
C++
219
star
5

panther

Perception-Aware Trajectory Planner in Dynamic Environments
C++
187
star
6

dpgo

Distributed Pose Graph Optimization
C++
181
star
7

mppi_numba

A GPU implementation of Model Predictive Path Integral (MPPI) control that uses a probabilistic traversability model for planning risk-aware trajectories.
Jupyter Notebook
179
star
8

rl_collision_avoidance

Training code for GA3C-CADRL algorithm (collision avoidance with deep RL)
Python
118
star
9

rmader

Decentralized Multiagent Trajectory Planner Robust to Communication Delay
C++
72
star
10

minvo

Simplexes with Minimum Volume Enclosing Polynomial Curves
MATLAB
71
star
11

aclswarm

MIT ACL distributed formation flying using multirotors
C++
67
star
12

nfl_veripy

Formal Verification of Neural Feedback Loops (NFLs)
Python
63
star
13

dpgo_ros

ROS wrapper for distributed pose graph optimization
C++
59
star
14

deep_panther

C++
51
star
15

clear

CLEAR algorithm for multi-view data association
MATLAB
35
star
16

planning

List of planning algorithms developed at MIT-ACL
34
star
17

puma

PUMA: Fully Decentralized Uncertainty-aware Multiagent Trajectory Planner with Real-time Image Segmentation-based Frame Alignment
C++
27
star
18

fastsam_ros

ROS wrapper for FastSAM, with docker
Python
17
star
19

separator

Linear separability (via planes) of two sets of 3D points
C++
12
star
20

dc2g

Planning Beyond the Sensing Horizon Using a Learned Context
Python
10
star
21

gym-minigrid

Python
10
star
22

SOS-Match

JavaScript
10
star
23

yolov7_ros

ROS wrapper for YOLOv7, with docker
Python
9
star
24

dc2g_public

Deep Cost-to-Go Planning Algorithm (IROS '19)
9
star
25

iscp_path_planner

Iterative sequential convex programming path planner, from Steven and Mark's ICRA 2015 paper
Python
4
star
26

panther_extra

Python
1
star
27

murp-datasets

Jupyter Notebook
1
star
28

motlee

Multiple Object Tracking with Localization Error Elimination
Python
1
star
29

mit-acl.github.io

SCSS
1
star