• Stars
    star
    694
  • Rank 62,535 (Top 2 %)
  • Language
    Python
  • License
    MIT License
  • Created over 1 year ago
  • Updated 2 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Implementation of Phenaki Video, which uses Mask GIT to produce text guided videos of up to 2 minutes in length, in Pytorch

Phenaki - Pytorch

Implementation of Phenaki Video, which uses Mask GIT to produce text guided videos of up to 2 minutes in length, in Pytorch. It will also combine another technique involving a token critic for potentially even better generations

Please join Join us on Discord if you are interested in replicating this work in the open

AI Coffeebreak explanation

Appreciation

  • Stability.ai for the generous sponsorship to work on cutting edge artificial intelligence research

  • šŸ¤— Huggingface for their amazing transformers and accelerate library

  • Guillem for his ongoing contributions

  • You? If you are a great machine learning engineer and / or researcher, feel free to contribute to the frontier of open source generative AI

Install

$ pip install phenaki-pytorch

Usage

C-ViViT

import torch
from phenaki_pytorch import CViViT, CViViTTrainer

cvivit = CViViT(
    dim = 512,
    codebook_size = 5000,
    image_size = 256,
    patch_size = 32,
    temporal_patch_size = 2,
    spatial_depth = 4,
    temporal_depth = 4,
    dim_head = 64,
    heads = 8
).cuda()

trainer = CViViTTrainer(
    cvivit,
    folder = '/path/to/images/or/videos',
    batch_size = 4,
    grad_accum_every = 4,
    train_on_images = False,  # you can train on images first, before fine tuning on video, for sample efficiency
    use_ema = False,          # recommended to be turned on (keeps exponential moving averaged cvivit) unless if you don't have enough resources
    num_train_steps = 10000
)

trainer.train()               # reconstructions and checkpoints will be saved periodically to ./results

Phenaki

import torch
from phenaki_pytorch import CViViT, MaskGit, Phenaki

cvivit = CViViT(
    dim = 512,
    codebook_size = 5000,
    image_size = (256, 128),  # video with rectangular screen allowed
    patch_size = 32,
    temporal_patch_size = 2,
    spatial_depth = 4,
    temporal_depth = 4,
    dim_head = 64,
    heads = 8
)

cvivit.load('/path/to/trained/cvivit.pt')

maskgit = MaskGit(
    num_tokens = 5000,
    max_seq_len = 1024,
    dim = 512,
    dim_context = 768,
    depth = 6,
)

phenaki = Phenaki(
    cvivit = cvivit,
    maskgit = maskgit
).cuda()

videos = torch.randn(3, 3, 17, 256, 128).cuda() # (batch, channels, frames, height, width)
mask = torch.ones((3, 17)).bool().cuda() # [optional] (batch, frames) - allows for co-training videos of different lengths as well as video and images in the same batch

texts = [
    'a whale breaching from afar',
    'young girl blowing out candles on her birthday cake',
    'fireworks with blue and green sparkles'
]

loss = phenaki(videos, texts = texts, video_frame_mask = mask)
loss.backward()

# do the above for many steps, then ...

video = phenaki.sample(texts = 'a squirrel examines an acorn', num_frames = 17, cond_scale = 5.) # (1, 3, 17, 256, 128)

# so in the paper, they do not really achieve 2 minutes of coherent video
# at each new scene with new text conditioning, they condition on the previous K frames
# you can easily achieve this with this framework as so

video_prime = video[:, :, -3:] # (1, 3, 3, 256, 128) # say K = 3

video_next = phenaki.sample(texts = 'a cat watches the squirrel from afar', prime_frames = video_prime, num_frames = 14) # (1, 3, 14, 256, 128)

# the total video

entire_video = torch.cat((video, video_next), dim = 2) # (1, 3, 17 + 14, 256, 128)

# and so on...

Or just import the make_video function

# ... above code

from phenaki_pytorch import make_video

entire_video, scenes = make_video(phenaki, texts = [
    'a squirrel examines an acorn buried in the snow',
    'a cat watches the squirrel from a frosted window sill',
    'zoom out to show the entire living room, with the cat residing by the window sill'
], num_frames = (17, 14, 14), prime_lengths = (5, 5))

entire_video.shape # (1, 3, 17 + 14 + 14 = 45, 256, 256)

# scenes - List[Tensor[3]] - video segment of each scene

That's it!

Token Critic

A new paper suggests that instead of relying on the predicted probabilities of each token as a measure of confidence, one can train an extra critic to decide what to iteratively mask during sampling. You can optionally train this critic for potentially better generations as shown below

import torch
from phenaki_pytorch import CViViT, MaskGit, TokenCritic, Phenaki

cvivit = CViViT(
    dim = 512,
    codebook_size = 5000,
    image_size = (256, 128),
    patch_size = 32,
    temporal_patch_size = 2,
    spatial_depth = 4,
    temporal_depth = 4,
    dim_head = 64,
    heads = 8
)

maskgit = MaskGit(
    num_tokens = 5000,
    max_seq_len = 1024,
    dim = 512,
    dim_context = 768,
    depth = 6,
)

# (1) define the critic

critic = TokenCritic(
    num_tokens = 5000,
    max_seq_len = 1024,
    dim = 512,
    dim_context = 768,
    depth = 6,
    has_cross_attn = True
)

trainer = Phenaki(
    maskgit = maskgit,
    cvivit = cvivit,
    critic = critic    # and then (2) pass it into Phenaki
).cuda()

texts = [
    'a whale breaching from afar',
    'young girl blowing out candles on her birthday cake',
    'fireworks with blue and green sparkles'
]

videos = torch.randn(3, 3, 3, 256, 128).cuda() # (batch, channels, frames, height, width)

loss = trainer(videos = videos, texts = texts)
loss.backward()

Or even simpler, just reuse MaskGit itself as a Self Critic (Nijkamp et al), by setting self_token_critic = True on the initialization of Phenaki

phenaki = Phenaki(
    ...,
    self_token_critic= True  # set this to True
)

Now your generations should be greatly improved!

Phenaki Trainer

This repository will also endeavor to allow the researcher to train on text-to-image and then text-to-video. Similarly, for unconditional training, the researcher should be able to first train on images and then fine tune on video. Below is an example for text-to-video

import torch
from torch.utils.data import Dataset
from phenaki_pytorch import CViViT, MaskGit, Phenaki, PhenakiTrainer

cvivit = CViViT(
    dim = 512,
    codebook_size = 5000,
    image_size = 256,
    patch_size = 32,
    temporal_patch_size = 2,
    spatial_depth = 4,
    temporal_depth = 4,
    dim_head = 64,
    heads = 8
)

cvivit.load('/path/to/trained/cvivit.pt')

maskgit = MaskGit(
    num_tokens = 5000,
    max_seq_len = 1024,
    dim = 512,
    dim_context = 768,
    depth = 6,
    unconditional = False
)

phenaki = Phenaki(
    cvivit = cvivit,
    maskgit = maskgit
).cuda()

# mock text video dataset
# you will have to extend your own, and return the (<video tensor>, <caption>) tuple

class MockTextVideoDataset(Dataset):
    def __init__(
        self,
        length = 100,
        image_size = 256,
        num_frames = 17
    ):
        super().__init__()
        self.num_frames = num_frames
        self.image_size = image_size
        self.len = length

    def __len__(self):
        return self.len

    def __getitem__(self, idx):
        video = torch.randn(3, self.num_frames, self.image_size, self.image_size)
        caption = 'video caption'
        return video, caption

dataset = MockTextVideoDataset()

# pass in the dataset

trainer = PhenakiTrainer(
    phenaki = phenaki,
    batch_size = 4,
    grad_accum_every = 4,
    train_on_images = False, # if your mock dataset above return (images, caption) pairs, set this to True
    dataset = dataset,       # pass in your dataset here
    sample_texts_file_path = '/path/to/captions.txt' # each caption should be on a new line, during sampling, will be randomly drawn
)

trainer.train()

Unconditional is as follows

ex. unconditional images and video training

import torch
from phenaki_pytorch import CViViT, MaskGit, Phenaki, PhenakiTrainer

cvivit = CViViT(
    dim = 512,
    codebook_size = 5000,
    image_size = 256,
    patch_size = 32,
    temporal_patch_size = 2,
    spatial_depth = 4,
    temporal_depth = 4,
    dim_head = 64,
    heads = 8
)

cvivit.load('/path/to/trained/cvivit.pt')

maskgit = MaskGit(
    num_tokens = 5000,
    max_seq_len = 1024,
    dim = 512,
    dim_context = 768,
    depth = 6,
    unconditional = False
)

phenaki = Phenaki(
    cvivit = cvivit,
    maskgit = maskgit
).cuda()

# pass in the folder to images or video

trainer = PhenakiTrainer(
    phenaki = phenaki,
    batch_size = 4,
    grad_accum_every = 4,
    train_on_images = True,                # for sake of example, bottom is folder of images
    dataset = '/path/to/images/or/video'
)

trainer.train()

Todo

  • pass mask probability into maskgit and auto-mask and get cross entropy loss

  • cross attention + get t5 embeddings code from imagen-pytorch and get classifier free guidance wired up

  • wire up full vqgan-vae for c-vivit, just take what is in parti-pytorch already, but make sure to use a stylegan discriminator as said in paper

  • complete token critic training code

  • complete first pass of maskgit scheduled sampling + token critic (optionally without if researcher does not want to do extra training)

  • inference code that allows for sliding time + conditioning on K past frames

  • alibi pos bias for temporal attention

  • give spatial attention the most powerful positional bias

  • make sure to use stylegan-esque discriminator

  • 3d relative positional bias for maskgit

  • make sure maskgit can also support training of images, and make sure it works on local machine

  • also build option for token critic to be conditioned with the text

  • should be able to train for text to image generation first

  • make sure critic trainer can take in cvivit and automatically pass in video patch shape for relative positional bias - make sure critic also gets optimal relative positional bias

  • training code for cvivit

  • move cvivit into own file

  • unconditional generations (both video and images)

  • wire up accelerate for multi-gpu training for both c-vivit and maskgit

  • add depthwise-convs to cvivit for position generating

  • some basic video manipulation code, allow for sampled tensor to be saved as gif

  • basic critic training code

  • add position generating dsconv to maskgit too

  • outfit customizable self attention blocks to stylegan discriminator

  • add all top of the line research for stabilizing transformers training

  • get some basic critic sampling code, show comparison of with and without critic

  • bring in concatenative token shift (temporal dimension)

  • add a DDPM upsampler, either port from imagen-pytorch or just rewrite a simple version here

  • take care of masking in maskgit

  • test maskgit + critic alone on oxford flowers dataset

  • support rectangular sized videos

  • add flash attention as an option for all transformers and cite @tridao

Citations

@article{Villegas2022PhenakiVL,
    title   = {Phenaki: Variable Length Video Generation From Open Domain Textual Description},
    author  = {Ruben Villegas and Mohammad Babaeizadeh and Pieter-Jan Kindermans and Hernan Moraldo and Han Zhang and Mohammad Taghi Saffar and Santiago Castro and Julius Kunze and D. Erhan},
    journal = {ArXiv},
    year    = {2022},
    volume  = {abs/2210.02399}
}
@article{Chang2022MaskGITMG,
    title   = {MaskGIT: Masked Generative Image Transformer},
    author  = {Huiwen Chang and Han Zhang and Lu Jiang and Ce Liu and William T. Freeman},
    journal = {2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year    = {2022},
    pages   = {11305-11315}
}
@article{Lezama2022ImprovedMI,
    title   = {Improved Masked Image Generation with Token-Critic},
    author  = {Jos{\'e} Lezama and Huiwen Chang and Lu Jiang and Irfan Essa},
    journal = {ArXiv},
    year    = {2022},
    volume  = {abs/2209.04439}
}
@misc{ding2021cogview,
    title   = {CogView: Mastering Text-to-Image Generation via Transformers},
    author  = {Ming Ding and Zhuoyi Yang and Wenyi Hong and Wendi Zheng and Chang Zhou and Da Yin and Junyang Lin and Xu Zou and Zhou Shao and Hongxia Yang and Jie Tang},
    year    = {2021},
    eprint  = {2105.13290},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@misc{shazeer2020glu,
    title   = {GLU Variants Improve Transformer},
    author  = {Noam Shazeer},
    year    = {2020},
    url     = {https://arxiv.org/abs/2002.05202}
}
@misc{press2021ALiBi,
    title   = {Train Short, Test Long: Attention with Linear Biases Enable Input Length Extrapolation},
    author  = {Ofir Press and Noah A. Smith and Mike Lewis},
    year    = {2021},
    url     = {https://ofir.io/train_short_test_long.pdf}
}
@article{Liu2022SwinTV,
    title   = {Swin Transformer V2: Scaling Up Capacity and Resolution},
    author  = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo},
    journal = {2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year    = {2022},
    pages   = {11999-12009}
}
@inproceedings{Nijkamp2021SCRIPTSP,
    title   = {SCRIPT: Self-Critic PreTraining of Transformers},
    author  = {Erik Nijkamp and Bo Pang and Ying Nian Wu and Caiming Xiong},
    booktitle = {North American Chapter of the Association for Computational Linguistics},
    year    = {2021}
}
@misc{https://doi.org/10.48550/arxiv.2302.01327,
    doi     = {10.48550/ARXIV.2302.01327},
    url     = {https://arxiv.org/abs/2302.01327},
    author  = {Kumar, Manoj and Dehghani, Mostafa and Houlsby, Neil},
    title   = {Dual PatchNorm},
    publisher = {arXiv},
    year    = {2023},
    copyright = {Creative Commons Attribution 4.0 International}
}
@misc{gilmer2023intriguing
    title  = {Intriguing Properties of Transformer Training Instabilities},
    author = {Justin Gilmer, Andrea Schioppa, and Jeremy Cohen},
    year   = {2023},
    status = {to be published - one attention stabilization technique is circulating within Google Brain, being used by multiple teams}
}

More Repositories

1

vit-pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch
Python
13,633
star
2

DALLE2-pytorch

Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis neural network, in Pytorch
Python
10,770
star
3

imagen-pytorch

Implementation of Imagen, Google's Text-to-Image Neural Network, in Pytorch
Python
7,675
star
4

PaLM-rlhf-pytorch

Implementation of RLHF (Reinforcement Learning with Human Feedback) on top of the PaLM architecture. Basically ChatGPT but with PaLM
Python
7,559
star
5

DALLE-pytorch

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch
Python
5,132
star
6

deep-daze

Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network). Technique was originally created by https://twitter.com/advadnoun
Python
4,387
star
7

denoising-diffusion-pytorch

Implementation of Denoising Diffusion Probabilistic Model in Pytorch
Python
3,959
star
8

stylegan2-pytorch

Simplest working implementation of Stylegan2, state of the art generative adversarial network, in Pytorch. Enabling everyone to experience disentanglement
Python
3,433
star
9

musiclm-pytorch

Implementation of MusicLM, Google's new SOTA model for music generation using attention networks, in Pytorch
Python
2,934
star
10

x-transformers

A simple but complete full-attention transformer with a set of promising experimental features from various papers
Python
2,707
star
11

big-sleep

A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN. Technique was originally created by https://twitter.com/advadnoun
Python
2,446
star
12

audiolm-pytorch

Implementation of AudioLM, a SOTA Language Modeling Approach to Audio Generation out of Google Research, in Pytorch
Python
2,179
star
13

reformer-pytorch

Reformer, the efficient Transformer, in Pytorch
Python
1,870
star
14

lion-pytorch

šŸ¦ Lion, new optimizer discovered by Google Brain using genetic algorithms that is purportedly better than Adam(w), in Pytorch
Python
1,859
star
15

toolformer-pytorch

Implementation of Toolformer, Language Models That Can Use Tools, by MetaAI
Python
1,846
star
16

make-a-video-pytorch

Implementation of Make-A-Video, new SOTA text to video generator from Meta AI, in Pytorch
Python
1,807
star
17

gigagan-pytorch

Implementation of GigaGAN, new SOTA GAN out of Adobe. Culmination of nearly a decade of research into GANs
Python
1,542
star
18

lightweight-gan

Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two
Python
1,526
star
19

lambda-networks

Implementation of LambdaNetworks, a new approach to image recognition that reaches SOTA with less compute
Python
1,516
star
20

byol-pytorch

Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch
Python
1,497
star
21

alphafold2

To eventually become an unofficial Pytorch implementation / replication of Alphafold2, as details of the architecture get released
Python
1,476
star
22

self-rewarding-lm-pytorch

Implementation of the training framework proposed in Self-Rewarding Language Model, from MetaAI
Python
1,154
star
23

naturalspeech2-pytorch

Implementation of Natural Speech 2, Zero-shot Speech and Singing Synthesizer, in Pytorch
Python
1,141
star
24

flamingo-pytorch

Implementation of šŸ¦© Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch
Python
1,108
star
25

soundstorm-pytorch

Implementation of SoundStorm, Efficient Parallel Audio Generation from Google Deepmind, in Pytorch
Python
1,091
star
26

video-diffusion-pytorch

Implementation of Video Diffusion Models, Jonathan Ho's new paper extending DDPMs to Video Generation - in Pytorch
Python
1,072
star
27

CoCa-pytorch

Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch
Python
945
star
28

performer-pytorch

An implementation of Performer, a linear attention-based transformer, in Pytorch
Python
937
star
29

perceiver-pytorch

Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch
Python
935
star
30

mlp-mixer-pytorch

An All-MLP solution for Vision, from Google AI
Python
833
star
31

RETRO-pytorch

Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch
Python
813
star
32

vector-quantize-pytorch

Vector Quantization, in Pytorch
Python
810
star
33

PaLM-pytorch

Implementation of the specific Transformer architecture from PaLM - Scaling Language Modeling with Pathways
Python
804
star
34

muse-maskgit-pytorch

Implementation of Muse: Text-to-Image Generation via Masked Generative Transformers, in Pytorch
Python
781
star
35

x-clip

A concise but complete implementation of CLIP with various experimental improvements from recent papers
Python
635
star
36

bottleneck-transformer-pytorch

Implementation of Bottleneck Transformer in Pytorch
Python
632
star
37

TimeSformer-pytorch

Implementation of TimeSformer from Facebook AI, a pure attention-based solution for video classification
Python
613
star
38

memorizing-transformers-pytorch

Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memories using approximate nearest neighbors, in Pytorch
Python
596
star
39

MEGABYTE-pytorch

Implementation of MEGABYTE, Predicting Million-byte Sequences with Multiscale Transformers, in Pytorch
Python
573
star
40

nuwa-pytorch

Implementation of NƜWA, state of the art attention network for text to video synthesis, in Pytorch
Python
531
star
41

point-transformer-pytorch

Implementation of the Point Transformer layer, in Pytorch
Python
518
star
42

parti-pytorch

Implementation of Parti, Google's pure attention-based text-to-image neural network, in Pytorch
Python
502
star
43

tab-transformer-pytorch

Implementation of TabTransformer, attention network for tabular data, in Pytorch
Python
485
star
44

voicebox-pytorch

Implementation of Voicebox, new SOTA Text-to-speech network from MetaAI, in Pytorch
Python
470
star
45

linear-attention-transformer

Transformer based on a variant of attention that is linear complexity in respect to sequence length
Python
468
star
46

meshgpt-pytorch

Implementation of MeshGPT, SOTA Mesh generation using Attention, in Pytorch
Python
430
star
47

g-mlp-pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch
Python
391
star
48

siren-pytorch

Pytorch implementation of SIREN - Implicit Neural Representations with Periodic Activation Function
Python
377
star
49

recurrent-memory-transformer-pytorch

Implementation of Recurrent Memory Transformer, Neurips 2022 paper, in Pytorch
Python
371
star
50

egnn-pytorch

Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch
Python
367
star
51

ema-pytorch

A simple way to keep track of an Exponential Moving Average (EMA) version of your pytorch model
Python
356
star
52

enformer-pytorch

Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch
Python
352
star
53

magvit2-pytorch

Implementation of MagViT2 Tokenizer in Pytorch
Python
346
star
54

memory-efficient-attention-pytorch

Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(nĀ²) Memory"
Python
328
star
55

FLASH-pytorch

Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"
Python
323
star
56

robotic-transformer-pytorch

Implementation of RT1 (Robotic Transformer) in Pytorch
Python
320
star
57

medical-chatgpt

Implementation of ChatGPT, but tailored towards primary care medicine, with the reward being able to collect patient histories in a thorough and efficient manner and come up with a reasonable differential diagnosis
Python
309
star
58

bit-diffusion

Implementation of Bit Diffusion, Hinton's group's attempt at discrete denoising diffusion, in Pytorch
Python
308
star
59

slot-attention

Implementation of Slot Attention from GoogleAI
Python
303
star
60

iTransformer

Unofficial implementation of iTransformer - SOTA Time Series Forecasting using Attention networks, out of Tsinghua / Ant group
Python
300
star
61

transformer-in-transformer

Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch
Python
277
star
62

axial-attention

Implementation of Axial attention - attending to multi-dimensional data efficiently
Python
273
star
63

conformer

Implementation of the convolutional module from the Conformer paper, for use in Transformers
Python
272
star
64

q-transformer

Implementation of Q-Transformer, Scalable Offline Reinforcement Learning via Autoregressive Q-Functions, out of Google Deepmind
Python
266
star
65

mixture-of-experts

A Pytorch implementation of Sparsely-Gated Mixture of Experts, for massively increasing the parameter count of language models
Python
264
star
66

magic3d-pytorch

Implementation of Magic3D, Text to 3D content synthesis, in Pytorch
Python
258
star
67

routing-transformer

Fully featured implementation of Routing Transformer
Python
251
star
68

classifier-free-guidance-pytorch

Implementation of Classifier Free Guidance in Pytorch, with emphasis on text conditioning, and flexibility to include multiple text embedding models
Python
248
star
69

Adan-pytorch

Implementation of the Adan (ADAptive Nesterov momentum algorithm) Optimizer in Pytorch
Python
241
star
70

x-unet

Implementation of a U-net complete with efficient attention as well as the latest research findings
Python
241
star
71

deformable-attention

Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"
Python
237
star
72

segformer-pytorch

Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch
Python
227
star
73

perfusion-pytorch

Implementation of Key-Locked Rank One Editing, from Nvidia AI
Python
224
star
74

sinkhorn-transformer

Sinkhorn Transformer - Practical implementation of Sparse Sinkhorn Attention
Python
222
star
75

equiformer-pytorch

Implementation of the Equiformer, SE3/E3 equivariant attention network that reaches new SOTA, and adopted for use by EquiFold for protein folding
Python
220
star
76

pixel-level-contrastive-learning

Implementation of Pixel-level Contrastive Learning, proposed in the paper "Propagate Yourself", in Pytorch
Python
220
star
77

spear-tts-pytorch

Implementation of Spear-TTS - multi-speaker text-to-speech attention network, in Pytorch
Python
220
star
78

ring-attention-pytorch

Explorations into Ring Attention, from Liu et al. at Berkeley AI
Python
218
star
79

local-attention

An implementation of local windowed attention for language modeling
Python
216
star
80

natural-speech-pytorch

Implementation of the neural network proposed in Natural Speech, a text-to-speech generator that is indistinguishable from human recordings for the first time, from Microsoft Research
Python
215
star
81

BS-RoFormer

Implementation of Band Split Roformer, SOTA Attention network for music source separation out of ByteDance AI Labs
Python
213
star
82

CoLT5-attention

Implementation of the conditionally routed attention in the CoLT5 architecture, in Pytorch
Python
212
star
83

se3-transformer-pytorch

Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. This specific repository is geared towards integration with eventual Alphafold2 replication.
Python
211
star
84

block-recurrent-transformer-pytorch

Implementation of Block Recurrent Transformer - Pytorch
Python
198
star
85

Mega-pytorch

Implementation of Mega, the Single-head Attention with Multi-headed EMA architecture that currently holds SOTA on Long Range Arena
Python
198
star
86

triton-transformer

Implementation of a Transformer, but completely in Triton
Python
195
star
87

jax2torch

Use Jax functions in Pytorch
Python
194
star
88

halonet-pytorch

Implementation of the šŸ˜‡ Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones
Python
193
star
89

st-moe-pytorch

Implementation of ST-Moe, the latest incarnation of MoE after years of research at Brain, in Pytorch
Python
190
star
90

flash-cosine-sim-attention

Implementation of fused cosine similarity attention in the same style as Flash Attention
Cuda
190
star
91

attention

This repository will house a visualization that will attempt to convey instant enlightenment of how Attention works to someone not working in artificial intelligence, with 3Blue1Brown as inspiration
HTML
189
star
92

simple-hierarchical-transformer

Experiments around a simple idea for inducing multiple hierarchical predictive model within a GPT
Python
189
star
93

med-seg-diff-pytorch

Implementation of MedSegDiff in Pytorch - SOTA medical segmentation using DDPM and filtering of features in fourier space
Python
187
star
94

electra-pytorch

A simple and working implementation of Electra, the fastest way to pretrain language models from scratch, in Pytorch
Python
186
star
95

recurrent-interface-network-pytorch

Implementation of Recurrent Interface Network (RIN), for highly efficient generation of images and video without cascading networks, in Pytorch
Python
185
star
96

unet-stylegan2

A Pytorch implementation of Stylegan2 with UNet Discriminator
Python
182
star
97

res-mlp-pytorch

Implementation of ResMLP, an all MLP solution to image classification, in Pytorch
Python
181
star
98

PaLM-jax

Implementation of the specific Transformer architecture from PaLM - Scaling Language Modeling with Pathways - in Jax (Equinox framework)
Python
180
star
99

glom-pytorch

An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attention (consensus between columns), for emergent part-whole heirarchies from data
Python
178
star
100

soft-moe-pytorch

Implementation of Soft MoE, proposed by Brain's Vision team, in Pytorch
Python
174
star