• Stars
    star
    5,132
  • Rank 8,094 (Top 0.2 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 4 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch

Train DALL-E w/ DeepSpeed Join us on Discord
Released DALLE Models
Web-Hostable DALLE Checkpoints

Yannic Kilcher's video

Implementation / replication of DALL-E (paper), OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the generations.


Quick Start

Deep Daze or Big Sleep are great alternatives!

For generating video and audio, please see NÜWA

Appreciation

This library could not have been possible without the contributions of janEbert, Clay, robvanvolt, Romaine, and Alexander! πŸ™

Status

  • Hannu has managed to train a small 6 layer DALL-E on a dataset of just 2000 landscape images! (2048 visual tokens)

  • Kobiso, a research engineer from Naver, has trained on the CUB200 dataset here, using full and deepspeed sparse attention

  • (3/15/21) afiaka87 has managed one epoch using a reversible DALL-E and the dVaE here

  • TheodoreGalanos has trained on 150k layouts with the following results

- Rom1504 has trained on 50k fashion images with captions with a really small DALL-E (2 layers) for just 24 hours with the following results

  • afiaka87 trained for 6 epochs on the same dataset as before thanks to the efficient 16k VQGAN with the following results

Thanks to the amazing "mega b#6696" you can generate from this checkpoint in colab - Run inference on the Afiaka checkpoint in Colab

  • (5/2/21) First 1.3B DALL-E from πŸ‡·πŸ‡Ί has been trained and released to the public! πŸŽ‰

  • (4/8/22) Moving onwards to DALLE-2!

Install

$ pip install dalle-pytorch

Usage

Train VAE

import torch
from dalle_pytorch import DiscreteVAE

vae = DiscreteVAE(
    image_size = 256,
    num_layers = 3,           # number of downsamples - ex. 256 / (2 ** 3) = (32 x 32 feature map)
    num_tokens = 8192,        # number of visual tokens. in the paper, they used 8192, but could be smaller for downsized projects
    codebook_dim = 512,       # codebook dimension
    hidden_dim = 64,          # hidden dimension
    num_resnet_blocks = 1,    # number of resnet blocks
    temperature = 0.9,        # gumbel softmax temperature, the lower this is, the harder the discretization
    straight_through = False, # straight-through for gumbel softmax. unclear if it is better one way or the other
)

images = torch.randn(4, 3, 256, 256)

loss = vae(images, return_loss = True)
loss.backward()

# train with a lot of data to learn a good codebook

Train DALL-E with pretrained VAE from above

import torch
from dalle_pytorch import DiscreteVAE, DALLE

vae = DiscreteVAE(
    image_size = 256,
    num_layers = 3,
    num_tokens = 8192,
    codebook_dim = 1024,
    hidden_dim = 64,
    num_resnet_blocks = 1,
    temperature = 0.9
)

dalle = DALLE(
    dim = 1024,
    vae = vae,                  # automatically infer (1) image sequence length and (2) number of image tokens
    num_text_tokens = 10000,    # vocab size for text
    text_seq_len = 256,         # text sequence length
    depth = 12,                 # should aim to be 64
    heads = 16,                 # attention heads
    dim_head = 64,              # attention head dimension
    attn_dropout = 0.1,         # attention dropout
    ff_dropout = 0.1            # feedforward dropout
)

text = torch.randint(0, 10000, (4, 256))
images = torch.randn(4, 3, 256, 256)

loss = dalle(text, images, return_loss = True)
loss.backward()

# do the above for a long time with a lot of data ... then

images = dalle.generate_images(text)
images.shape # (4, 3, 256, 256)

To prime with a starting crop of an image, simply pass two more arguments

img_prime = torch.randn(4, 3, 256, 256)

images = dalle.generate_images(
    text,
    img = img_prime,
    num_init_img_tokens = (14 * 32)  # you can set the size of the initial crop, defaults to a little less than ~1/2 of the tokens, as done in the paper
)

images.shape # (4, 3, 256, 256)

You may also want to generate text using DALL-E. For that call this function:

text_tokens, texts = dalle.generate_texts(tokenizer, text)

OpenAI's Pretrained VAE

You can also skip the training of the VAE altogether, using the pretrained model released by OpenAI! The wrapper class should take care of downloading and caching the model for you auto-magically.

import torch
from dalle_pytorch import OpenAIDiscreteVAE, DALLE

vae = OpenAIDiscreteVAE()       # loads pretrained OpenAI VAE

dalle = DALLE(
    dim = 1024,
    vae = vae,                  # automatically infer (1) image sequence length and (2) number of image tokens
    num_text_tokens = 10000,    # vocab size for text
    text_seq_len = 256,         # text sequence length
    depth = 1,                  # should aim to be 64
    heads = 16,                 # attention heads
    dim_head = 64,              # attention head dimension
    attn_dropout = 0.1,         # attention dropout
    ff_dropout = 0.1            # feedforward dropout
)

text = torch.randint(0, 10000, (4, 256))
images = torch.randn(4, 3, 256, 256)

loss = dalle(text, images, return_loss = True)
loss.backward()

Taming Transformer's Pretrained VQGAN VAE

You can also use the pretrained VAE offered by the authors of Taming Transformers! Currently only the VAE with a codebook size of 1024 is offered, with the hope that it may train a little faster than OpenAI's, which has a size of 8192.

In contrast to OpenAI's VAE, it also has an extra layer of downsampling, so the image sequence length is 256 instead of 1024 (this will lead to a 16 reduction in training costs, when you do the math). Whether it will generalize as well as the original DALL-E is up to the citizen scientists out there to discover.

Update - it works!

from dalle_pytorch import VQGanVAE

vae = VQGanVAE()

# the rest is the same as the above example

The default VQGan is the codebook size 1024 one trained on imagenet. If you wish to use a different one, you can use the vqgan_model_path and vqgan_config_path to pass the .ckpt file and the .yaml file. These options can be used both in train-dalle script or as argument of VQGanVAE class. Other pretrained VQGAN can be found in taming transformers readme. If you want to train a custom one you can follow this guide

Adjust text conditioning strength

Recently there has surfaced a new technique for guiding diffusion models without a classifier. The gist of the technique involves randomly dropping out the text condition during training, and at inference time, deriving the rough direction from unconditional to conditional distributions.

Katherine Crowson outlined in a tweet how this could work for autoregressive attention models. I have decided to include her idea in this repository for further exploration. One only has to account for two extra keyword arguments on training (null_cond_prob) and generation (cond_scale).

import torch
from dalle_pytorch import DiscreteVAE, DALLE

vae = DiscreteVAE(
    image_size = 256,
    num_layers = 3,
    num_tokens = 8192,
    codebook_dim = 1024,
    hidden_dim = 64,
    num_resnet_blocks = 1,
    temperature = 0.9
)

dalle = DALLE(
    dim = 1024,
    vae = vae,
    num_text_tokens = 10000,
    text_seq_len = 256,
    depth = 12,
    heads = 16,
    dim_head = 64,
    attn_dropout = 0.1,
    ff_dropout = 0.1
)

text = torch.randint(0, 10000, (4, 256))
images = torch.randn(4, 3, 256, 256)

loss = dalle(
    text,
    images,
    return_loss = True,
    null_cond_prob = 0.2  # firstly, set this to the probability of dropping out the condition, 20% is recommended as a default
)

loss.backward()

# do the above for a long time with a lot of data ... then

images = dalle.generate_images(
    text,
    cond_scale = 3. # secondly, set this to a value greater than 1 to increase the conditioning beyond average
)

images.shape # (4, 3, 256, 256)

That's it!

Ranking the generations

Train CLIP

import torch
from dalle_pytorch import CLIP

clip = CLIP(
    dim_text = 512,
    dim_image = 512,
    dim_latent = 512,
    num_text_tokens = 10000,
    text_enc_depth = 6,
    text_seq_len = 256,
    text_heads = 8,
    num_visual_tokens = 512,
    visual_enc_depth = 6,
    visual_image_size = 256,
    visual_patch_size = 32,
    visual_heads = 8
)

text = torch.randint(0, 10000, (4, 256))
images = torch.randn(4, 3, 256, 256)
mask = torch.ones_like(text).bool()

loss = clip(text, images, text_mask = mask, return_loss = True)
loss.backward()

To get the similarity scores from your trained Clipper, just do

images, scores = dalle.generate_images(text, mask = mask, clip = clip)

scores.shape # (2,)
images.shape # (2, 3, 256, 256)

# do your topk here, in paper they sampled 512 and chose top 32

Or you can just use the official CLIP model to rank the images from DALL-E

Scaling depth

In the blog post, they used 64 layers to achieve their results. I added reversible networks, from the Reformer paper, in order for users to attempt to scale depth at the cost of compute. Reversible networks allow you to scale to any depth at no memory cost, but a little over 2x compute cost (each layer is rerun on the backward pass).

Simply set the reversible keyword to True for the DALLE class

dalle = DALLE(
    dim = 1024,
    vae = vae,
    num_text_tokens = 10000,
    text_seq_len = 256,
    depth = 64,
    heads = 16,
    reversible = True  # <-- reversible networks https://arxiv.org/abs/2001.04451
)

Sparse Attention

The blogpost alluded to a mixture of different types of sparse attention, used mainly on the image (while the text presumably had full causal attention). I have done my best to replicate these types of sparse attention, on the scant details released. Primarily, it seems as though they are doing causal axial row / column attention, combined with a causal convolution-like attention.

By default DALLE will use full attention for all layers, but you can specify the attention type per layer as follows.

  • full full attention

  • axial_row axial attention, along the rows of the image feature map

  • axial_col axial attention, along the columns of the image feature map

  • conv_like convolution-like attention, for the image feature map

The sparse attention only applies to the image. Text will always receive full attention, as said in the blogpost.

dalle = DALLE(
    dim = 1024,
    vae = vae,
    num_text_tokens = 10000,
    text_seq_len = 256,
    depth = 64,
    heads = 16,
    reversible = True,
    attn_types = ('full', 'axial_row', 'axial_col', 'conv_like')  # cycles between these four types of attention
)

Deepspeed Sparse Attention

You can also train with Microsoft Deepspeed's Sparse Attention, with any combination of dense and sparse attention that you'd like. However, you will have to endure the installation process.

First, you need to install Deepspeed with Sparse Attention

$ sh install_deepspeed.sh

Next, you need to install the pip package triton. It will need to be a version < 1.0 because that's what Microsoft used.

$ pip install triton==0.4.2

If both of the above succeeded, now you can train with Sparse Attention!

dalle = DALLE(
    dim = 512,
    vae = vae,
    num_text_tokens = 10000,
    text_seq_len = 256,
    depth = 64,
    heads = 8,
    attn_types = ('full', 'sparse')  # interleave sparse and dense attention for 64 layers
)

Training

This section will outline how to train the discrete variational autoencoder as well as the final multi-modal transformer (DALL-E). We are going to use Weights & Biases for all the experiment tracking.

(You can also do everything in this section in a Google Colab, link below)

Open In Colab Train in Colab

$ pip install wandb

Followed by

$ wandb login

VAE

To train the VAE, you just need to run

$ python train_vae.py --image_folder /path/to/your/images

If you installed everything correctly, a link to the experiments page should show up in your terminal. You can follow your link there and customize your experiment, like the example layout below.

You can of course open up the training script at ./train_vae.py, where you can modify the constants, what is passed to Weights & Biases, or any other tricks you know to make the VAE learn better.

Model will be saved periodically to ./vae.pt

In the experiment tracker, you will have to monitor the hard reconstruction, as we are essentially teaching the network to compress images into discrete visual tokens for use in the transformer as a visual vocabulary.

Weights and Biases will allow you to monitor the temperature annealing, image reconstructions (encoder and decoder working properly), as well as to watch out for codebook collapse (where the network decides to only use a few tokens out of what you provide it).

Once you have trained a decent VAE to your satisfaction, you can move on to the next step with your model weights at ./vae.pt.

DALL-E Training

Training using an Image-Text-Folder

Now you just have to invoke the ./train_dalle.py script, indicating which VAE model you would like to use, as well as the path to your folder if images and text.

The dataset I am currently working with contains a folder of images and text files, arbitraily nested in subfolders, where text file name corresponds with the image name, and where each text file contains multiple descriptions, delimited by newlines. The script will find and pair all the image and text files with the same names, and randomly select one of the textual descriptions during batch creation.

ex.

πŸ“‚image-and-text-data
 ┣ πŸ“œcat.png
 ┣ πŸ“œcat.txt
 ┣ πŸ“œdog.jpg
 ┣ πŸ“œdog.txt
 ┣ πŸ“œturtle.jpeg
 β”— πŸ“œturtle.txt

ex. cat.txt

A black and white cat curled up next to the fireplace
A fireplace, with a cat sleeping next to it
A black cat with a red collar napping

If you have a dataset with its own directory structure for tying together image and text descriptions, do let me know in the issues, and I'll see if I can accommodate it in the script.

$ python train_dalle.py --vae_path ./vae.pt --image_text_folder /path/to/data

You likely will not finish DALL-E training as quickly as you did your Discrete VAE. To resume from where you left off, just run the same script, but with the path to your DALL-E checkpoints.

$ python train_dalle.py --dalle_path ./dalle.pt --image_text_folder /path/to/data

Training using WebDataset

WebDataset files are regular .tar(.gz) files which can be streamed and used for DALLE-pytorch training. You Just need to provide the image (first comma separated argument) and caption (second comma separated argument) column key after the --wds argument. The ---image_text_folder points to your .tar(.gz) file instead of the datafolder.

$ python train_dalle.py --wds img,cap --image_text_folder /path/to/data.tar(.gz)

Distributed training with deepspeed works the same way, e.g.:

$ deepspeed train_dalle.py --wds img,cap --image_text_folder /path/to/data.tar(.gz) --fp16 --deepspeed

If you have containing shards (dataset split into several .tar(.gz) files), this is also supported:

$ deepspeed train_dalle.py --wds img,cap --image_text_folder /path/to/shardfolder --fp16 --deepspeed

You can stream the data from a http server or gloogle cloud storage like this:

$ deepspeed train_dalle.py --image_text_folder "http://storage.googleapis.com/nvdata-openimages/openimages-train-{000000..000554}.tar" --wds jpg,json --taming --truncate_captions --random_resize_crop_lower_ratio=0.8 --attn_types=full --epochs=2 --fp16 --deepspeed

In order to convert your image-text-folder to WebDataset format, you can make use of one of several methods. (https://www.youtube.com/watch?v=v_PacO-3OGQ here are given 4 examples, or a little helper script which also supports splitting your dataset into shards of .tar.gz files https://github.com/robvanvolt/DALLE-datasets/blob/main/wds_create_shards.py)

DALL-E with OpenAI's VAE

You can now also train DALL-E without having to train the Discrete VAE at all, courtesy to their open-sourcing their model. You simply have to invoke the train_dalle.py script without specifying the --vae_path

$ python train_dalle.py --image_text_folder /path/to/coco/dataset

DALL-E with Taming Transformer's VQVAE

Just use the --taming flag. Highly recommended you use this VAE over the OpenAI one!

$ python train_dalle.py --image_text_folder /path/to/coco/dataset --taming

Generation

Once you have successfully trained DALL-E, you can then use the saved model for generation!

$ python generate.py --dalle_path ./dalle.pt --text 'fireflies in a field under a full moon'

You should see your images saved as ./outputs/{your prompt}/{image number}.jpg

To generate multiple images, just pass in your text with '|' character as a separator.

ex.

$ python generate.py --dalle_path ./dalle.pt --text 'a dog chewing a bone|a cat chasing mice|a frog eating a fly'

Note that DALL-E is a full image+text language model. As a consequence you can also generate text using a dalle model.

$ python generate.py --dalle_path ./dalle.pt --text 'a dog chewing a bone' --gentext

This will complete the provided text, save it in a caption.txt and generate the corresponding images.

Docker

You can use a docker container to make sure the version of Pytorch and Cuda are correct for training DALL-E. Docker and Docker Container Runtime should be installed.

To build:

docker build -t dalle docker

To run in an interactive shell:

docker run --gpus all -it --mount src="$(pwd)",target=/workspace/dalle,type=bind dalle:latest bash

Distributed Training

DeepSpeed

Thanks to janEbert, the repository is now equipped so you can train DALL-E with Microsoft's Deepspeed!

You can simply replace any $ python <file>.py [args...] command with

$ deepspeed <file>.py [args...] --deepspeed

to use the aforementioned DeepSpeed library for distributed training, speeding up your experiments.

Modify the deepspeed_config dictionary in train_dalle.py or train_vae.py according to the DeepSpeed settings you'd like to use for each one. See the DeepSpeed configuration docs for more information.

DeepSpeed - 32 and 16 bit Precision

As of DeepSpeed version 0.3.16, ZeRO optimizations can be used with single-precision floating point numbers. If you are using an older version, you'll have to pass the --fp16 flag to be able to enable ZeRO optimizations.

DeepSpeed - Apex Automatic Mixed Precision.

Automatic mixed precision is a stable alternative to fp16 which still provides a decent speedup. In order to run with Apex AMP (through DeepSpeed), you will need to install DeepSpeed using either the Dockerfile or the bash script.

Then you will need to install apex from source. This may take awhile and you may see some compilation warnings which can be ignored.

sh install_apex.sh

Now, run train_dalle.py with deepspeed instead of python as done here:

deepspeed train_dalle.py \
    --taming \
    --image_text_folder 'DatasetsDir' \
    --distr_backend 'deepspeed' \
    --amp

Horovod

Horovod offers a stable way for data parallel training.

After installing Horovod, replace any $ python <file>.py [args...] command with

$ horovodrun -np <num-gpus> <file>.py [args...] --distributed_backend horovod

to use the Horovod library for distributed training, speeding up your experiments. This will multiply your effective batch size per training step by <num-gpus>, so you may need to rescale the learning rate accordingly.

Custom Tokenizer

This repository supports custom tokenization with YouTokenToMe, if you wish to use it instead of the default simple tokenizer. Simply pass in an extra --bpe_path when invoking train_dalle.py and generate.py, with the path to your BPE model file.

The only requirement is that you use 0 as the padding during tokenization

ex.

$ python train_dalle.py --image_text_folder ./path/to/data --bpe_path ./path/to/bpe.model

To create a BPE model file from scratch, firstly

$ pip install youtokentome

Then you need to prepare a big text file that is a representative sample of the type of text you want to encode. You can then invoke the youtokentome command-line tools. You'll also need to specify the vocab size you wish to use, in addition to the corpus of text.

$ yttm bpe --vocab_size 8000 --data ./path/to/big/text/file.txt --model ./path/to/bpe.model

That's it! The BPE model file is now saved to ./path/to/bpe.model and you can begin training!

Chinese

You can train with a pretrained chinese tokenizer offered by Huggingface πŸ€— by simply passing in an extra flag --chinese

ex.

$ python train_dalle.py --chinese --image_text_folder ./path/to/data
$ python generate.py --chinese --text 'θΏ½θ€ιΌ ηš„ηŒ«'

Citations

@misc{ramesh2021zeroshot,
    title   = {Zero-Shot Text-to-Image Generation}, 
    author  = {Aditya Ramesh and Mikhail Pavlov and Gabriel Goh and Scott Gray and Chelsea Voss and Alec Radford and Mark Chen and Ilya Sutskever},
    year    = {2021},
    eprint  = {2102.12092},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@misc{unpublished2021clip,
    title  = {CLIP: Connecting Text and Images},
    author = {Alec Radford, Ilya Sutskever, Jong Wook Kim, Gretchen Krueger, Sandhini Agarwal},
    year   = {2021}
}
@misc{kitaev2020reformer,
    title   = {Reformer: The Efficient Transformer},
    author  = {Nikita Kitaev and Łukasz Kaiser and Anselm Levskaya},
    year    = {2020},
    eprint  = {2001.04451},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
@misc{esser2021taming,
    title   = {Taming Transformers for High-Resolution Image Synthesis},
    author  = {Patrick Esser and Robin Rombach and BjΓΆrn Ommer},
    year    = {2021},
    eprint  = {2012.09841},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@misc{ding2021cogview,
    title   = {CogView: Mastering Text-to-Image Generation via Transformers},
    author  = {Ming Ding and Zhuoyi Yang and Wenyi Hong and Wendi Zheng and Chang Zhou and Da Yin and Junyang Lin and Xu Zou and Zhou Shao and Hongxia Yang and Jie Tang},
    year    = {2021},
    eprint  = {2105.13290},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@software{peng_bo_2021_5196578,
    author       = {PENG Bo},
    title        = {BlinkDL/RWKV-LM: 0.01},
    month        = {aug},
    year         = {2021},
    publisher    = {Zenodo},
    version      = {0.01},
    doi          = {10.5281/zenodo.5196578},
    url          = {https://doi.org/10.5281/zenodo.5196578}
}
@misc{su2021roformer,
    title   = {RoFormer: Enhanced Transformer with Rotary Position Embedding},
    author  = {Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu},
    year    = {2021},
    eprint  = {2104.09864},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}
@inproceedings{ho2021classifierfree,
    title   = {Classifier-Free Diffusion Guidance},
    author  = {Jonathan Ho and Tim Salimans},
    booktitle = {NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications},
    year    = {2021},
    url     = {https://openreview.net/forum?id=qw8AKxfYbI}
}
@misc{crowson2022,
    author  = {Katherine Crowson},
    url     = {https://twitter.com/RiversHaveWings/status/1478093658716966912}
}
@article{Liu2023BridgingDA,
    title   = {Bridging Discrete and Backpropagation: Straight-Through and Beyond},
    author  = {Liyuan Liu and Chengyu Dong and Xiaodong Liu and Bin Yu and Jianfeng Gao},
    journal = {ArXiv},
    year    = {2023},
    volume  = {abs/2304.08612}
}

Those who do not want to imitate anything, produce nothing. - Dali

More Repositories

1

vit-pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch
Python
13,633
star
2

DALLE2-pytorch

Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis neural network, in Pytorch
Python
11,068
star
3

imagen-pytorch

Implementation of Imagen, Google's Text-to-Image Neural Network, in Pytorch
Python
7,832
star
4

PaLM-rlhf-pytorch

Implementation of RLHF (Reinforcement Learning with Human Feedback) on top of the PaLM architecture. Basically ChatGPT but with PaLM
Python
7,611
star
5

deep-daze

Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network). Technique was originally created by https://twitter.com/advadnoun
Python
4,387
star
6

denoising-diffusion-pytorch

Implementation of Denoising Diffusion Probabilistic Model in Pytorch
Python
3,959
star
7

stylegan2-pytorch

Simplest working implementation of Stylegan2, state of the art generative adversarial network, in Pytorch. Enabling everyone to experience disentanglement
Python
3,433
star
8

musiclm-pytorch

Implementation of MusicLM, Google's new SOTA model for music generation using attention networks, in Pytorch
Python
3,048
star
9

x-transformers

A simple but complete full-attention transformer with a set of promising experimental features from various papers
Python
2,707
star
10

big-sleep

A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN. Technique was originally created by https://twitter.com/advadnoun
Python
2,446
star
11

audiolm-pytorch

Implementation of AudioLM, a SOTA Language Modeling Approach to Audio Generation out of Google Research, in Pytorch
Python
2,285
star
12

lion-pytorch

🦁 Lion, new optimizer discovered by Google Brain using genetic algorithms that is purportedly better than Adam(w), in Pytorch
Python
1,933
star
13

toolformer-pytorch

Implementation of Toolformer, Language Models That Can Use Tools, by MetaAI
Python
1,905
star
14

reformer-pytorch

Reformer, the efficient Transformer, in Pytorch
Python
1,870
star
15

make-a-video-pytorch

Implementation of Make-A-Video, new SOTA text to video generator from Meta AI, in Pytorch
Python
1,853
star
16

gigagan-pytorch

Implementation of GigaGAN, new SOTA GAN out of Adobe. Culmination of nearly a decade of research into GANs
Python
1,632
star
17

alphafold2

To eventually become an unofficial Pytorch implementation / replication of Alphafold2, as details of the architecture get released
Python
1,536
star
18

lightweight-gan

Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two
Python
1,526
star
19

lambda-networks

Implementation of LambdaNetworks, a new approach to image recognition that reaches SOTA with less compute
Python
1,516
star
20

byol-pytorch

Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch
Python
1,497
star
21

self-rewarding-lm-pytorch

Implementation of the training framework proposed in Self-Rewarding Language Model, from MetaAI
Python
1,253
star
22

naturalspeech2-pytorch

Implementation of Natural Speech 2, Zero-shot Speech and Singing Synthesizer, in Pytorch
Python
1,214
star
23

flamingo-pytorch

Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch
Python
1,155
star
24

video-diffusion-pytorch

Implementation of Video Diffusion Models, Jonathan Ho's new paper extending DDPMs to Video Generation - in Pytorch
Python
1,141
star
25

soundstorm-pytorch

Implementation of SoundStorm, Efficient Parallel Audio Generation from Google Deepmind, in Pytorch
Python
1,130
star
26

CoCa-pytorch

Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch
Python
990
star
27

performer-pytorch

An implementation of Performer, a linear attention-based transformer, in Pytorch
Python
937
star
28

perceiver-pytorch

Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch
Python
935
star
29

RETRO-pytorch

Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch
Python
835
star
30

mlp-mixer-pytorch

An All-MLP solution for Vision, from Google AI
Python
833
star
31

muse-maskgit-pytorch

Implementation of Muse: Text-to-Image Generation via Masked Generative Transformers, in Pytorch
Python
821
star
32

PaLM-pytorch

Implementation of the specific Transformer architecture from PaLM - Scaling Language Modeling with Pathways
Python
812
star
33

vector-quantize-pytorch

Vector Quantization, in Pytorch
Python
810
star
34

phenaki-pytorch

Implementation of Phenaki Video, which uses Mask GIT to produce text guided videos of up to 2 minutes in length, in Pytorch
Python
724
star
35

x-clip

A concise but complete implementation of CLIP with various experimental improvements from recent papers
Python
658
star
36

bottleneck-transformer-pytorch

Implementation of Bottleneck Transformer in Pytorch
Python
632
star
37

memorizing-transformers-pytorch

Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memories using approximate nearest neighbors, in Pytorch
Python
614
star
38

TimeSformer-pytorch

Implementation of TimeSformer from Facebook AI, a pure attention-based solution for video classification
Python
613
star
39

MEGABYTE-pytorch

Implementation of MEGABYTE, Predicting Million-byte Sequences with Multiscale Transformers, in Pytorch
Python
594
star
40

meshgpt-pytorch

Implementation of MeshGPT, SOTA Mesh generation using Attention, in Pytorch
Python
564
star
41

nuwa-pytorch

Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch
Python
531
star
42

voicebox-pytorch

Implementation of Voicebox, new SOTA Text-to-speech network from MetaAI, in Pytorch
Python
521
star
43

point-transformer-pytorch

Implementation of the Point Transformer layer, in Pytorch
Python
518
star
44

parti-pytorch

Implementation of Parti, Google's pure attention-based text-to-image neural network, in Pytorch
Python
509
star
45

tab-transformer-pytorch

Implementation of TabTransformer, attention network for tabular data, in Pytorch
Python
485
star
46

alphafold3-pytorch

Implementation of Alphafold 3 in Pytorch
Python
483
star
47

linear-attention-transformer

Transformer based on a variant of attention that is linear complexity in respect to sequence length
Python
468
star
48

magvit2-pytorch

Implementation of MagViT2 Tokenizer in Pytorch
Python
436
star
49

ema-pytorch

A simple way to keep track of an Exponential Moving Average (EMA) version of your pytorch model
Python
408
star
50

egnn-pytorch

Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch
Python
400
star
51

g-mlp-pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch
Python
391
star
52

recurrent-memory-transformer-pytorch

Implementation of Recurrent Memory Transformer, Neurips 2022 paper, in Pytorch
Python
384
star
53

ring-attention-pytorch

Implementation of πŸ’ Ring Attention, from Liu et al. at Berkeley AI, in Pytorch
Python
380
star
54

siren-pytorch

Pytorch implementation of SIREN - Implicit Neural Representations with Periodic Activation Function
Python
377
star
55

enformer-pytorch

Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch
Python
352
star
56

iTransformer

Unofficial implementation of iTransformer - SOTA Time Series Forecasting using Attention networks, out of Tsinghua / Ant group
Python
349
star
57

robotic-transformer-pytorch

Implementation of RT1 (Robotic Transformer) in Pytorch
Python
346
star
58

memory-efficient-attention-pytorch

Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(nΒ²) Memory"
Python
342
star
59

FLASH-pytorch

Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"
Python
334
star
60

bit-diffusion

Implementation of Bit Diffusion, Hinton's group's attempt at discrete denoising diffusion, in Pytorch
Python
313
star
61

medical-chatgpt

Implementation of ChatGPT, but tailored towards primary care medicine, with the reward being able to collect patient histories in a thorough and efficient manner and come up with a reasonable differential diagnosis
Python
311
star
62

slot-attention

Implementation of Slot Attention from GoogleAI
Python
303
star
63

q-transformer

Implementation of Q-Transformer, Scalable Offline Reinforcement Learning via Autoregressive Q-Functions, out of Google Deepmind
Python
293
star
64

BS-RoFormer

Implementation of Band Split Roformer, SOTA Attention network for music source separation out of ByteDance AI Labs
Python
289
star
65

classifier-free-guidance-pytorch

Implementation of Classifier Free Guidance in Pytorch, with emphasis on text conditioning, and flexibility to include multiple text embedding models
Python
282
star
66

transformer-in-transformer

Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch
Python
277
star
67

axial-attention

Implementation of Axial attention - attending to multi-dimensional data efficiently
Python
273
star
68

conformer

Implementation of the convolutional module from the Conformer paper, for use in Transformers
Python
272
star
69

mixture-of-experts

A Pytorch implementation of Sparsely-Gated Mixture of Experts, for massively increasing the parameter count of language models
Python
264
star
70

deformable-attention

Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"
Python
258
star
71

magic3d-pytorch

Implementation of Magic3D, Text to 3D content synthesis, in Pytorch
Python
258
star
72

x-unet

Implementation of a U-net complete with efficient attention as well as the latest research findings
Python
252
star
73

routing-transformer

Fully featured implementation of Routing Transformer
Python
251
star
74

Adan-pytorch

Implementation of the Adan (ADAptive Nesterov momentum algorithm) Optimizer in Pytorch
Python
245
star
75

spear-tts-pytorch

Implementation of Spear-TTS - multi-speaker text-to-speech attention network, in Pytorch
Python
241
star
76

st-moe-pytorch

Implementation of ST-Moe, the latest incarnation of MoE after years of research at Brain, in Pytorch
Python
237
star
77

perfusion-pytorch

Implementation of Key-Locked Rank One Editing, from Nvidia AI
Python
229
star
78

equiformer-pytorch

Implementation of the Equiformer, SE3/E3 equivariant attention network that reaches new SOTA, and adopted for use by EquiFold for protein folding
Python
227
star
79

segformer-pytorch

Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch
Python
227
star
80

sinkhorn-transformer

Sinkhorn Transformer - Practical implementation of Sparse Sinkhorn Attention
Python
222
star
81

pixel-level-contrastive-learning

Implementation of Pixel-level Contrastive Learning, proposed in the paper "Propagate Yourself", in Pytorch
Python
220
star
82

lumiere-pytorch

Implementation of Lumiere, SOTA text-to-video generation from Google Deepmind, in Pytorch
Python
216
star
83

local-attention

An implementation of local windowed attention for language modeling
Python
216
star
84

CoLT5-attention

Implementation of the conditionally routed attention in the CoLT5 architecture, in Pytorch
Python
216
star
85

natural-speech-pytorch

Implementation of the neural network proposed in Natural Speech, a text-to-speech generator that is indistinguishable from human recordings for the first time, from Microsoft Research
Python
215
star
86

soft-moe-pytorch

Implementation of Soft MoE, proposed by Brain's Vision team, in Pytorch
Python
211
star
87

se3-transformer-pytorch

Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. This specific repository is geared towards integration with eventual Alphafold2 replication.
Python
211
star
88

block-recurrent-transformer-pytorch

Implementation of Block Recurrent Transformer - Pytorch
Python
205
star
89

Mega-pytorch

Implementation of Mega, the Single-head Attention with Multi-headed EMA architecture that currently holds SOTA on Long Range Arena
Python
201
star
90

simple-hierarchical-transformer

Experiments around a simple idea for inducing multiple hierarchical predictive model within a GPT
Python
198
star
91

med-seg-diff-pytorch

Implementation of MedSegDiff in Pytorch - SOTA medical segmentation using DDPM and filtering of features in fourier space
Python
195
star
92

triton-transformer

Implementation of a Transformer, but completely in Triton
Python
195
star
93

jax2torch

Use Jax functions in Pytorch
Python
194
star
94

flash-cosine-sim-attention

Implementation of fused cosine similarity attention in the same style as Flash Attention
Cuda
194
star
95

halonet-pytorch

Implementation of the πŸ˜‡ Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones
Python
193
star
96

attention

This repository will house a visualization that will attempt to convey instant enlightenment of how Attention works to someone not working in artificial intelligence, with 3Blue1Brown as inspiration
HTML
189
star
97

recurrent-interface-network-pytorch

Implementation of Recurrent Interface Network (RIN), for highly efficient generation of images and video without cascading networks, in Pytorch
Python
188
star
98

electra-pytorch

A simple and working implementation of Electra, the fastest way to pretrain language models from scratch, in Pytorch
Python
186
star
99

PaLM-jax

Implementation of the specific Transformer architecture from PaLM - Scaling Language Modeling with Pathways - in Jax (Equinox framework)
Python
184
star
100

unet-stylegan2

A Pytorch implementation of Stylegan2 with UNet Discriminator
Python
182
star