• Stars
    star
    144
  • Rank 247,326 (Top 6 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 3 years ago
  • Updated 5 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

JAXline - Experiment framework for JAX

What is JAXline

JAXline is a distributed JAX training and evaluation framework. It is designed to be forked, covering only the most general aspects of experiment boilerplate. This ensures that it can serve as an effective starting point for a wide variety of use cases.

Many users will only need to fork the experiment.py file and rely on JAXline for everything else. Other users with more custom requirements will want to (and are encouraged to) fork other components of JAXline too, depending on their particular use case.

Contents

Quickstart

Installation

JAXline is written in pure Python, but depends on C++ code via JAX and TensorFlow (the latter is used for writing summaries).

Because JAX / TensorFlow installation is different depending on your CUDA version, JAXline does not list JAX or TensorFlow as a dependencies in requirements.txt.

First, follow the instructions to install JAX and TensorFlow respectively with the relevant accelerator support.

Then, install JAXline using pip:

$ pip install git+https://github.com/deepmind/jaxline

Building your own experiment

  1. Create an experiment.py file and inside it define an Experiment class that inherits from experiment.AbstractExperiment.

  2. Implement the methods required by AbstractExperiment in your own Experiment class (i.e. the abstractmethods). Optionally override the default implementations of AbstractExperiment's other methods.

  3. Define a config, either in experiment.py or elsewhere, defining any settings that you do not wish to inherit from base_config. At the very least this will include config.experiment_kwargs to define the config required by your Experiment. Make sure this config object is included in the flags accessible to experiment.py.

  4. Add the following lines to the bottom of your experiment.py to ensure that your Experiment object is correctly passed through to platform.py:

    if __name__ == '__main__':
      flags.mark_flag_as_required('config')
      platform.main(Experiment, sys.argv[1:])
    
  5. Run your experiment.py.

Checkpointing

So far this version of JAXline only supports in-memory checkpointing, as handled by our InMemoryCheckpointer It allows you to save in memory multiple separate checkpoint series in your train and eval jobs (see below).

The user is expected to override the CHECKPOINT_ATTRS and NON_BROADCAST_CHECKPOINT_ATTRS dicts (at least one of these) in order to map checkpointable attributes of their own Experiment class to names they wish them to be stored under in the checkpoint. CHECKPOINT_ATTRS specifies jax DeviceArrays for which jaxline should only take the first slice (corresponding to device 0) for checkpointing. NON_BROADCAST_CHECKPOINT_ATTRS specifies any other picklable object that jaxline should checkpoint whole.

You can specify the frequency with which to save checkpoints, as well as whether to checkpoint based on step or seconds, by setting the save_checkpoint_interval and interval_type config flags here.

config.max_checkpoints_to_keep can be used to specify the maximum number of checkpoints to keep. By default this is set to 5.

By setting config.best_model_eval_metric, you can specify which value in the scalars dictionary returned by your evaluate function to use as a 'fitness score'. JAXline will then save a separate series of checkpoints corresponding to steps at which the fitness score is better than previously seen. Depending on whether you are maximizing or minimizing the eval metric, set config.best_model_eval_metric_higher_is_better to True or False.

Logging

So far this version of JAXline only supports logging to Tensorboard via our TensorBoardLogger

The user is expected to return a dictionary of scalars from their step and evaluate methods, and TensorBoardLogger.write_scalars will periodically write these scalars to TensorBoard.

All logging will happen asynchronously to the main thread so as not to interrupt the training loop.

You can specify the frequency with which to log, as well as whether to log by step or by seconds, by setting the log_train_data_interval and interval_type config flags here. If config.log_all_train_data is set to True (False by default) JAXline will cache the scalars from intermediate steps and log them all at once at the end of the period.

JAXline passes the TensorBoardLogger instance through to the step and evaluate methods to allow the user to perform additional logging inside their Experiment class if they so wish. A particular use case for this is if you want to write images, which can be achieved via ExperimentWriter.write_images.

Launching

So far this version of JAXline does not support launching remotely.

Distribution strategy

JAX makes it super simple to distribute your jobs across multiple hosts and cores. As such, JAXline leaves it up to the user to implement distributed training and evaluation.

Essentially, by decorating a function with jax.pmap you tell JAX to slice the inputs along the first dimension and then run the function in parallel on each input slice, across all available local devices (or a subset thereof). In other words, jax.pmap invokes the single-program multiple-data (SPMD) paradigm. Then by using jax.lax collective communications operations from within your pmapped function, you can tell JAX to communicate results between all devices on all hosts. For example, you may want to use jax.lax.psum to sum up the gradients across all devices on all hosts, and return the result to each device (an all-reduce).

JAX will then automatically detect which devices are available on each host allowing jax.pmap and jax.lax to work their magic.

One very important thing to bear in mind is that each time you call jax.pmap, a separate TPU program will be compiled for the computation it wraps. Therefore you do not want to be doing this regularly! In particular, for a standard ML experiment you will want to call jax.pmap once to wrap your parameter update function, and then you call this wrapped function on each step, rather than calling jax.pmap on each step, which will kill your performance! This is a very common mistake for new JAX starters. Luckily it has quite an extreme downside so should be easily noticeable. In JAXline we actually call jax.pmap once more in next_device_state to wrap our function to update device state between steps, so end up with 2 TPU programs rather than just 1 (but this adds negligible overhead).

Random number handling

Random numbers in JAX might seem a bit unfamiliar to users coming from ordinary numpy and Tensorflow. In these languages we have global stateful PRNGs. Every time you call a random op it updates the PRNGs global state. However, stateful PRNGs in JAX would be incompatible with JAX's functional design semantics, leading to problems with reproducibility and parallelizability. JAX introduces stateless PRNGs to avoid these issues. The downside of this is that the user needs to thread random state through their program, splitting a new PRNG off from the old one every time they want to draw a new random number. This can be quite onerous, especially in a distributed setting, where you may have independent PRNGs on each device.

In JAXline we take care of this for you. On each step, in next_device_state, we split a new PRNG from the old one, and optionally specialize it to the host and/or device based on the random_mode_train config value you specify. We then pass this new PRNG through to your step function to use on that particular step. At evaluation time, we pass a fresh PRNG to your evaluate method, initialized according to the random_mode_eval config value you specify. This PRNG will be the same on each call to evaluate (as normally you want your evaluation to be deterministic). If you want different random behaviour on each call, a simple solution would be to fold in the global_step i.e. jax.random.fold_in(rng, global_step) at the top of your evaluate method.

Of course you are free to completely ignore the PRNGs we pass through to your step and evaluate methods and handle random numbers in your own way, should you have different requirements.

Debugging

Post mortem debugging

By setting the flag --jaxline_post_mortem (defined here) on the command-line, tasks will pause on exceptions (except SystemExit and KeyboardInterrupt) and enter post-mortem debugging using pdb. Paused tasks will hang until you attach a debugger.

Disabling pmap and jit

By setting the flag --jaxline_disable_pmap_jit on the command-line, all pmaps and jits will be disabled, making it easier to inspect and trace code in a debugger.

Citing Jaxline

Please use this reference.

Contributing

Thank you for your interest in JAXline. The primary goal of open-sourcing JAXline was to allow us to open-source our research more easily. Unfortunately, we are not currently able to accept pull requests from external contributors, though we hope to do so in future. Please feel free to open GitHub issues.

More Repositories

1

deepmind-research

This repository contains implementations and illustrative code to accompany DeepMind publications
Jupyter Notebook
12,817
star
2

alphafold

Open source code for AlphaFold.
Python
11,700
star
3

sonnet

TensorFlow-based neural network library
Python
9,691
star
4

pysc2

StarCraft II Learning Environment
Python
7,904
star
5

mujoco

Multi-Joint dynamics with Contact. A general purpose physics simulator.
Jupyter Notebook
7,202
star
6

lab

A customisable 3D platform for agent-based AI research
C
7,012
star
7

graph_nets

Build Graph Nets in Tensorflow
Python
5,325
star
8

graphcast

Python
4,242
star
9

learning-to-learn

Learning to Learn in TensorFlow
Python
4,063
star
10

open_spiel

OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games.
C++
4,019
star
11

alphageometry

Python
3,580
star
12

dm_control

Google DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.
Python
3,473
star
13

acme

A library of reinforcement learning components and agents
Python
3,372
star
14

trfl

TensorFlow Reinforcement Learning
Python
3,139
star
15

dm-haiku

JAX-based neural network library
Python
2,697
star
16

alphatensor

Python
2,616
star
17

dnc

A TensorFlow implementation of the Differentiable Neural Computer.
Python
2,478
star
18

mctx

Monte Carlo tree search in JAX
Python
2,209
star
19

gemma

Open weights LLM from Google DeepMind.
Jupyter Notebook
2,061
star
20

code_contests

C++
2,010
star
21

kinetics-i3d

Convolutional neural network model for video classification trained on the Kinetics dataset.
Python
1,639
star
22

mathematics_dataset

This dataset code generates mathematical question and answer pairs, from a range of question types at roughly school-level difficulty.
Python
1,621
star
23

optax

Optax is a gradient processing and optimization library for JAX.
Python
1,492
star
24

bsuite

bsuite is a collection of carefully-designed experiments that investigate core capabilities of a reinforcement learning (RL) agent
Python
1,465
star
25

penzai

A JAX research toolkit for building, editing, and visualizing neural networks.
Python
1,405
star
26

educational

Jupyter Notebook
1,382
star
27

jraph

A Graph Neural Network Library in Jax
Python
1,306
star
28

rc-data

Question answering dataset featured in "Teaching Machines to Read and Comprehend
Python
1,285
star
29

rlax

Python
1,185
star
30

tapnet

Tracking Any Point (TAP)
Python
1,033
star
31

scalable_agent

A TensorFlow implementation of Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures.
Python
972
star
32

neural-processes

This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).
Jupyter Notebook
966
star
33

android_env

RL research on Android devices.
Python
946
star
34

mujoco_menagerie

A collection of high-quality models for the MuJoCo physics engine, curated by Google DeepMind.
Jupyter Notebook
926
star
35

dramatron

Dramatron uses large language models to generate coherent scripts and screenplays.
Jupyter Notebook
904
star
36

tree

tree is a library for working with nested data structures
Python
891
star
37

xmanager

A platform for managing machine learning experiments
Python
794
star
38

mujoco_mpc

Real-time behaviour synthesis with MuJoCo, using Predictive Control
C++
771
star
39

materials_discovery

Python
770
star
40

chex

Python
716
star
41

reverb

Reverb is an efficient and easy-to-use data storage and transport system designed for machine learning research
C++
692
star
42

alphadev

Python
662
star
43

pycolab

A highly-customisable gridworld game engine with some batteries included. Make your own gridworld games to test reinforcement learning agents!
Python
654
star
44

ferminet

An implementation of the Fermionic Neural Network for ab-initio electronic structure calculations
Python
643
star
45

hanabi-learning-environment

hanabi_learning_environment is a research platform for Hanabi experiments.
Python
614
star
46

funsearch

Jupyter Notebook
611
star
47

ai-safety-gridworlds

This is a suite of reinforcement learning environments illustrating various safety properties of intelligent agents.
Python
577
star
48

dqn

Lua/Torch implementation of DQN (Nature, 2015)
Lua
546
star
49

ithaca

Restoring and attributing ancient texts using deep neural networks
Jupyter Notebook
540
star
50

meltingpot

A suite of test scenarios for multi-agent reinforcement learning.
Python
516
star
51

distrax

Python
509
star
52

recurrentgemma

Open weights language model from Google DeepMind, based on Griffin.
Python
505
star
53

surface-distance

Library to compute surface distance based performance metrics for segmentation tasks.
Python
493
star
54

tracr

Python
467
star
55

dsprites-dataset

Dataset to assess the disentanglement properties of unsupervised learning methods
Jupyter Notebook
463
star
56

alphamissense

Python
455
star
57

narrativeqa

This repository contains the NarrativeQA dataset. It includes the list of documents with Wikipedia summaries, links to full stories, and questions and answers.
Shell
432
star
58

lab2d

A customisable 2D platform for agent-based AI research
C++
415
star
59

open_x_embodiment

Jupyter Notebook
409
star
60

dqn_zoo

DQN Zoo is a collection of reference implementations of reinforcement learning agents developed at DeepMind based on the Deep Q-Network (DQN) agent.
Python
406
star
61

clrs

Python
376
star
62

spriteworld

Spriteworld: a flexible, configurable python-based reinforcement learning environment
Python
366
star
63

dm_pix

PIX is an image processing library in JAX, for JAX.
Python
363
star
64

concordia

A library for generative social simulation
Python
351
star
65

mathematics_conjectures

Jupyter Notebook
348
star
66

alphastar

Python
346
star
67

spiral

We provide a pre-trained model for unconditional 19-step generation of CelebA-HQ images
C++
327
star
68

dm_env

A Python interface for reinforcement learning environments
Python
326
star
69

dm_robotics

Libraries, tools and tasks created and used at DeepMind Robotics.
Python
315
star
70

uncertain_ground_truth

Dermatology ddx dataset, Jax implementations of Monte Carlo conformal prediction, plausibility regions and statistical annotation aggregation from our recent work on uncertain ground truth (TMLR'23 and ArXiv pre-print).
Python
315
star
71

long-form-factuality

Benchmarking long-form factuality in large language models. Original code for our paper "Long-form factuality in large language models".
Python
314
star
72

launchpad

Python
305
star
73

leo

Implementation of Meta-Learning with Latent Embedding Optimization
Python
302
star
74

streetlearn

A C++/Python implementation of the StreetLearn environment based on images from Street View, as well as a TensorFlow implementation of goal-driven navigation agents solving the task published in “Learning to Navigate in Cities Without a Map”, NeurIPS 2018
C++
279
star
75

gqn-datasets

Datasets used to train Generative Query Networks (GQNs) in the ‘Neural Scene Representation and Rendering’ paper.
Python
269
star
76

enn

Python
265
star
77

multi_object_datasets

Multi-object image datasets with ground-truth segmentation masks and generative factors.
Python
247
star
78

AQuA

A algebraic word problem dataset, with multiple choice questions annotated with rationales.
238
star
79

card2code

A code generation dataset for generating the code that implements Hearthstone and Magic The Gathering card effects.
236
star
80

grid-cells

Implementation of the supervised learning experiments in Vector-based navigation using grid-like representations in artificial agents, as published at https://www.nature.com/articles/s41586-018-0102-6
Python
236
star
81

arnheim

Jupyter Notebook
235
star
82

synjax

Python
233
star
83

torch-hdf5

Torch interface to HDF5 library
Lua
231
star
84

dm_memorytasks

A set of 13 diverse machine-learning tasks that require memory to solve.
Python
220
star
85

Temporal-3D-Pose-Kinetics

Exploiting temporal context for 3D human pose estimation in the wild: 3D poses for the Kinetics dataset
Python
214
star
86

opro

official code for "Large Language Models as Optimizers"
Python
199
star
87

dm_alchemy

DeepMind Alchemy task environment: a meta-reinforcement learning benchmark
Python
197
star
88

neural_testbed

Jupyter Notebook
187
star
89

kfac-jax

Second Order Optimization and Curvature Estimation with K-FAC in JAX.
Python
187
star
90

pg19

179
star
91

xquad

173
star
92

jmp

JMP is a Mixed Precision library for JAX.
Python
171
star
93

spectral_inference_networks

Implementation of Spectral Inference Networks, ICLR 2019
Python
165
star
94

abstract-reasoning-matrices

Progressive matrices dataset, as described in: Measuring abstract reasoning in neural networks (Barrett*, Hill*, Santoro*, Morcos, Lillicrap), ICML2018
162
star
95

xitari

This is the 0.4 release of the Arcade Learning Environment (ALE), a platform designed for AI research. ALE is based on Stella, an Atari 2600 VCS emulator.
C++
159
star
96

tensor_annotations

Annotating tensor shapes using Python types
Python
158
star
97

neural_networks_chomsky_hierarchy

Neural Networks and the Chomsky Hierarchy
Python
155
star
98

symplectic-gradient-adjustment

A colab that implements the Symplectic Gradient Adjustment optimizer from "The mechanics of n-player differentiable games"
Jupyter Notebook
150
star
99

mc_gradients

Jupyter Notebook
149
star
100

interval-bound-propagation

This repository contains a simple implementation of Interval Bound Propagation (IBP) using TensorFlow: https://arxiv.org/abs/1810.12715
Python
148
star