• Stars
    star
    1,957
  • Rank 23,689 (Top 0.5 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created about 5 years ago
  • Updated 7 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Medical imaging toolkit for deep learning

TorchIO logo

Tools like TorchIO are a symptom of the maturation of medical AI research using deep learning techniques.

Jack Clark, Policy Director at OpenAI (link).


Package PyPI downloads PyPI version Conda version
CI Tests status Documentation status Coverage status
Code Code quality Code quality Code maintainability pre-commit
Tutorials Google Colab
Community Slack Twitter Twitter YouTube

Progressive artifacts

Augmentation


Original Random blur
Original Random blur
Random flip Random noise
Random flip Random noise
Random affine transformation Random elastic transformation
Random affine transformation Random elastic transformation
Random bias field artifact Random motion artifact
Random bias field artifact Random motion artifact
Random spike artifact Random ghosting artifact
Random spike artifact Random ghosting artifact

Queue

(Queue for patch-based training)


TorchIO is a Python package containing a set of tools to efficiently read, preprocess, sample, augment, and write 3D medical images in deep learning applications written in PyTorch, including intensity and spatial transforms for data augmentation and preprocessing. Transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity or k-space motion artifacts.

This package has been greatly inspired by NiftyNet, which is not actively maintained anymore.

Credits

If you like this repository, please click on Star!

If you use this package for your research, please cite our paper:

F. Pรฉrez-Garcรญa, R. Sparks, and S. Ourselin. TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Computer Methods and Programs in Biomedicine (June 2021), p. 106236. ISSN: 0169-2607.doi:10.1016/j.cmpb.2021.106236.

BibTeX entry:

@article{perez-garcia_torchio_2021,
    title = {TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning},
    journal = {Computer Methods and Programs in Biomedicine},
    pages = {106236},
    year = {2021},
    issn = {0169-2607},
    doi = {https://doi.org/10.1016/j.cmpb.2021.106236},
    url = {https://www.sciencedirect.com/science/article/pii/S0169260721003102},
    author = {P{\'e}rez-Garc{\'i}a, Fernando and Sparks, Rachel and Ourselin, S{\'e}bastien},
}

This project is supported by the following institutions:

Getting started

See Getting started for installation instructions and a Hello, World! example.

Longer usage examples can be found in the tutorials.

All the documentation is hosted on Read the Docs.

Please open a new issue if you think something is missing.

Contributors

Thanks goes to all these people (emoji key):

Fernando Pรฉrez-Garcรญa
Fernando Pรฉrez-Garcรญa

๐Ÿ’ป ๐Ÿ“–
valabregue
valabregue

๐Ÿค” ๐Ÿ‘€ ๐Ÿ’ป ๐Ÿ’ฌ
GFabien
GFabien

๐Ÿ’ป ๐Ÿ‘€ ๐Ÿค”
G.Reguig
G.Reguig

๐Ÿ’ป
Niels Schurink
Niels Schurink

๐Ÿ’ป
Ibrahim Hadzic
Ibrahim Hadzic

๐Ÿ›
ReubenDo
ReubenDo

๐Ÿค”
Julian Klug
Julian Klug

๐Ÿค”
David Vรถlgyes
David Vรถlgyes

๐Ÿค” ๐Ÿ’ป
Jean-Christophe Fillion-Robin
Jean-Christophe Fillion-Robin

๐Ÿ“–
Suraj Pai
Suraj Pai

๐Ÿค”
Ben Darwin
Ben Darwin

๐Ÿค”
Oeslle Lucena
Oeslle Lucena

๐Ÿ›
Soumick Chatterjee
Soumick Chatterjee

๐Ÿ’ป
neuronflow
neuronflow

๐Ÿ“–
Jan Witowski
Jan Witowski

๐Ÿ“–
Derk Mus
Derk Mus

๐Ÿ“– ๐Ÿ’ป ๐Ÿ›
Christian Herz
Christian Herz

๐Ÿ›
Cory Efird
Cory Efird

๐Ÿ’ป ๐Ÿ›
Esteban Vaca C.
Esteban Vaca C.

๐Ÿ›
Ray Phan
Ray Phan

๐Ÿ›
Akis Linardos
Akis Linardos

๐Ÿ› ๐Ÿ’ป
Nina Montana-Brown
Nina Montana-Brown

๐Ÿ“– ๐Ÿš‡
fabien-brulport
fabien-brulport

๐Ÿ›
malteekj
malteekj

๐Ÿ›
Andres Diaz-Pinto
Andres Diaz-Pinto

๐Ÿ›
Sarthak Pati
Sarthak Pati

๐Ÿ“ฆ ๐Ÿ“–
GabriellaKamlish
GabriellaKamlish

๐Ÿ›
Tyler Spears
Tyler Spears

๐Ÿ›
DaGuT
DaGuT

๐Ÿ“–
Xiangyu Zhao
Xiangyu Zhao

๐Ÿ›
siahuat0727
siahuat0727

๐Ÿ“– ๐Ÿ›
Svdvoort
Svdvoort

๐Ÿ’ป
Albans98
Albans98

๐Ÿ’ป
Matthew T. Warkentin
Matthew T. Warkentin

๐Ÿ’ป
glupol
glupol

๐Ÿ›
ramonemiliani93
ramonemiliani93

๐Ÿ“– ๐Ÿ› ๐Ÿ’ป
Justus Schock
Justus Schock

๐Ÿ’ป ๐Ÿ› ๐Ÿค” ๐Ÿ‘€
Stefan Milorad Radonjiฤ‡
Stefan Milorad Radonjiฤ‡

๐Ÿ›
Sajan Gohil
Sajan Gohil

๐Ÿ›
Ikko Ashimine
Ikko Ashimine

๐Ÿ“–
laynr
laynr

๐Ÿ“–
Omar U. Espejel
Omar U. Espejel

๐Ÿ”Š
James Butler
James Butler

๐Ÿ›
res191
res191

๐Ÿ”
nengwp
nengwp

๐Ÿ› ๐Ÿ“–
susanveraclarke
susanveraclarke

๐ŸŽจ
nepersica
nepersica

๐Ÿ›
Sebastian Penhouet
Sebastian Penhouet

๐Ÿค”
Bigsealion
Bigsealion

๐Ÿ›
Dลพenan Zukiฤ‡
Dลพenan Zukiฤ‡

๐Ÿ‘€
vasl12
vasl12

โœ… ๐Ÿ›
Franรงois Rousseau
Franรงois Rousseau

๐Ÿ›
snavalm
snavalm

๐Ÿ’ป
Jacob Reinhold
Jacob Reinhold

๐Ÿ’ป
Hsu
Hsu

๐Ÿ›
snipdome
snipdome

๐Ÿ›
SmallY
SmallY

๐Ÿ›
guigautier
guigautier

๐Ÿค”
AyedSamy
AyedSamy

๐Ÿ›
J. Miguel Valverde
J. Miguel Valverde

๐Ÿค” ๐Ÿ’ป ๐Ÿ›
Josรฉ Guilherme Almeida
Josรฉ Guilherme Almeida

๐Ÿค”
Asim Usman
Asim Usman

๐Ÿ›
cbri92
cbri92

๐Ÿ›
Markus J. Ankenbrand
Markus J. Ankenbrand

๐Ÿ›
Ziv Yaniv
Ziv Yaniv

๐Ÿ“–
Luca Lumetti
Luca Lumetti

๐Ÿ’ป ๐Ÿ“–
chagelo
chagelo

๐Ÿ›
mueller-franzes
mueller-franzes

๐Ÿ’ป
Abdelwahab Kawafi
Abdelwahab Kawafi

๐Ÿ›
Arthur Masson
Arthur Masson

๐Ÿ› ๐Ÿ“–
์–‘ํ˜„์‹
์–‘ํ˜„์‹

๐Ÿ’ป
nicoloesch
nicoloesch

๐Ÿ’ป
Amund Vedal
Amund Vedal

๐Ÿ“–
Alabamagan
Alabamagan

๐Ÿ›
sbdoherty
sbdoherty

๐Ÿ“–

This project follows the all-contributors specification. Contributions of any kind welcome!

More Repositories

1

awesome-medical-imaging

Awesome list of software that I use to do research in medical imaging.
202
star
2

unet

"pip install unet": PyTorch Implementation of 1D, 2D and 3D U-Net architecture.
Python
134
star
3

highresnet

PyTorch implementation of HighRes3DNet
Python
48
star
4

vesseg

Brain vessel segmentation using 3D convolutional neural networks
Python
38
star
5

SlicerPyTorch

This extension contains only a module with some tools to install PyTorch inside Slicer, using the best possible version.
Python
30
star
6

staple

Python implementation of the STAPLE segmentation algorithm
Python
21
star
7

SlicerTorchIO

3D Slicer module for TorchIO.
Python
20
star
8

SlicerParcellation

3D Slicer modules for brain segmentation using deep learning.
Python
20
star
9

miccai-educational-challenge-2019

Tutorial about combining PyTorch and NiftyNet for deep learning and medical image computing
Jupyter Notebook
14
star
10

resector

Algorithm to simulate resection surgery on brain MRI scans. Published in MICCAI 2020, extended in IJCARS.
Python
13
star
11

resseg-ijcars

Code, data and model for Pรฉrez-Garcรญa et al. 2021, "A self-supervised learning strategy for postoperative brain cavity segmentation simulating resections"
Python
13
star
12

optimally-oriented-flux

Python
12
star
13

SlicerEPISURG

3D Slicer module to visualize the EPISURG dataset and segment postoperative brain resection cavities using deep learning.
Python
8
star
14

spotify-bpm-splitter

App to split a Spotify list in children playlists sorted by tempo
Python
7
star
15

gestures-miccai-2021

Code for "Pรฉrez-Garcรญa et al. 2021, Transfer Learning of Deep Spatiotemporal Networks to Model Arbitrarily Long Videos of Seizures, MICCAI 2021".
Python
6
star
16

torchio-notebooks

Jupyter Notebook
6
star
17

arduino-claw-crane

Collaboration with artist Estefanรญa B. Flores for her master's thesis at Goldsmiths, University of London.
C++
6
star
18

resseg

RESSEG: automatic segmentation of postoperative brain cavities on 3D MRI using deep learning.
Jupyter Notebook
5
star
19

ndPytools

Little Python tool to manage Hamamatsu NDPI files
Python
5
star
20

faces-map

Tool to embed faces in a 2D space using computer vision and machine learning
Python
4
star
21

jvol

JPEG compression for 3D volumes.
Python
4
star
22

creative-coding

p5.js examples
JavaScript
3
star
23

miccai-educational-challenge-2020

My submission to the MICCAI Educational Challenge 2020.
Jupyter Notebook
3
star
24

tf2pt

Jupyter Notebook
2
star
25

orientations

List of resources to better understand medical images orientation.
2
star
26

arterys-models

Python
2
star
27

vesseg-models

Weights for digital subtraction angiography segmentation
2
star
28

url-pdf-img

Python
1
star
29

pyblock

Python
1
star
30

advent-of-code-2022

My solutions for Advent of Code 2022
Python
1
star
31

slicer-blockmatching

3D Slicer module as a GUI for blockmatching, a robust registration tool
Python
1
star
32

docker-dgx-marc

Dockerfile
1
star
33

highresnet-models

1
star
34

phd-thesis-template

TeX
1
star
35

pytorch-tests

Python
1
star
36

SlicerAnimation

3D Slicer module to animate objects using linear transforms
Python
1
star
37

blockmatching-nipype

Python
1
star
38

scutoids

Python
1
star
39

telegram-gpt-bot

Use ChatGPT with your voice (in any language) and Telegram.
Python
1
star
40

arduino-acronyms

1
star
41

cast-coursework

Computer-assisted Surgery and Therapy coursework
TeX
1
star
42

slicer-niftyreg

Python
1
star