• Stars
    star
    1,524
  • Rank 30,745 (Top 0.7 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created about 5 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.

higher logo

higher is a library providing support for higher-order optimization, e.g. through unrolled first-order optimization loops, of "meta" aspects of these loops. It provides tools for turning existing torch.nn.Module instances "stateless", meaning that changes to the parameters thereof can be tracked, and gradient with regard to intermediate parameters can be taken. It also provides a suite of differentiable optimizers, to facilitate the implementation of various meta-learning approaches.

Full documentation is available at https://higher.readthedocs.io/en/latest/.

Requirements and Installation

  • Python version >= 3.5
  • PyTorch version >= 1.3

To install higher from PyPi:

pip install higher

To install higher from source:

git clone [email protected]:facebookresearch/higher.git
cd higher
pip install .

Alternatively python setup.py install will do the same thing.

Citation

If you use higher in your research and found it helpful, please consider citing the following paper:

@article{grefenstette2019generalized,
  title={Generalized Inner Loop Meta-Learning},
  author={Grefenstette, Edward and Amos, Brandon and Yarats, Denis and Htut, Phu Mon and Molchanov, Artem and Meier, Franziska and Kiela, Douwe and Cho, Kyunghyun and Chintala, Soumith},
  journal={arXiv preprint arXiv:1910.01727},
  year={2019}
}

Use case

Your needs

You have a model with parameters P, where P[t] denotes the parameters at update timestep t. You want to update the model through k steps of optimization, and compute gradients through the optimization process, i.e. compute torch.autograd.grad(P[k], P[0]) or obtain gradients that depend on this gradient pathway existing.

Your obstacles

You are using some existing code for your model, so the parameters are stateful, preventing you from forming a graph with P[t] as nodes. Even if you roll your own solution, you want to use optimization techniques beyond normal SGD, and torch.optim optimizers don't let you optimize "through" them.

Your solution

Good news: higher has got you covered! Using our growing set of tools and utility functions, you can backpropagate through an unbounded number of model update steps for all your meta-learning needs. This library includes:

  • Helper functions for monkey-patching torch.nn modules to make them functional (non-stateful), i.e. feed their parameters as an extra argument during the forward pass.
  • Classes implementing differentiable versions of torch.optim.Adam (and SGD), designed to track or branch out from the state of a "normal" Adam instance.

Example Usage

Say your training code looks like this:

model = MyModel()
opt = torch.optim.Adam(model.parameters())

for xs, ys in data:
    opt.zero_grad()
    logits = model(xs)
    loss = loss_function(logits, ys)
    loss.backward()
    opt.step()

To turn this into a differentiable version, the following changes should be introduced:

model = MyModel()
opt = torch.optim.Adam(model.parameters())

# When you want to branch from the current state of your model and unroll
# optimization, follow this example. This context manager gets a snapshot of the
# current version of the model and optimizer at the point where you want to
# start unrolling and create a functional version `fmodel` which executes the
# forward pass of `model` with implicit fast weights which can be read by doing
# `fmodel.parameters()`, and a differentiable optimizer `diffopt` which ensures
# that at each step, gradient of `fmodel.parameters()` with regard to initial
# fast weights `fmodel.parameters(time=0)` (or any other part of the unrolled
# model history) is defined.

with higher.innerloop_ctx(model, opt) as (fmodel, diffopt):
    for xs, ys in data:
        logits = fmodel(xs)  # modified `params` can also be passed as a kwarg
        loss = loss_function(logits, ys)  # no need to call loss.backwards()
        diffopt.step(loss)  # note that `step` must take `loss` as an argument!
        # The line above gets P[t+1] from P[t] and loss[t]. `step` also returns
        # these new parameters, as an alternative to getting them from
        # `fmodel.fast_params` or `fmodel.parameters()` after calling
        # `diffopt.step`.

        # At this point, or at any point in the iteration, you can take the
        # gradient of `fmodel.parameters()` (or equivalently
        # `fmodel.fast_params`) w.r.t. `fmodel.parameters(time=0)` (equivalently
        # `fmodel.init_fast_params`). i.e. `fast_params` will always have
        # `grad_fn` as an attribute, and be part of the gradient tape.

    # At the end of your inner loop you can obtain these e.g. ...
    grad_of_grads = torch.autograd.grad(
        meta_loss_fn(fmodel.parameters()), fmodel.parameters(time=0))

Beware that when unrolling your optimisation like this for k, all gradients and all activations of your model at each step is kept in memory, meaning the memory footprint of your model is k times greater.

For more complete examples, please look at examples.

Adding your own optimizers

It is possible to use optimizers other that those found in torch.optim. A differentiable version must be implemented first. This can be done by subclassing higher.optim.DifferentiableOptimizer and overriding the _update method, following the arguments of the original. Assuming the logic of the optimizer being added follows the logic of those found in torch.optim, the steps to follow are more or less:

  1. Remove the following code (no support for closures).
    loss = None
    if closure is not None:
        loss = closure()
    
  2. Replace
    for group in self.param_groups:
        for p in group['params']:
            if p.grad is None:
                continue
            grad = p.grad.data
    
    with
    zipped = zip(self.param_groups, grouped_grads)
    for group_idx, (group, grads) in enumerate(zipped):
        for p_idx, (p, g) in enumerate(zip(group['params'], grads)):
          if g is None:
              continue
    
  3. Replace state = self.state[p] with state = self.state[group_idx][p_idx].
  4. Replace any in-place op with a non in-place op, e.g. t.add_(a, x).mul_(y) should become t = t.add(a, x).mul(y) (note the assignment). Be careful to also track where dictionaries are being implicitly updated by such ops, e.g. if there is code of the form:
    p = state['k']
    ...
    p.add_(a, x)
    
    in the original optimizer, this code should be converted to
    p = state['k']
    ...
    state['k'] = p = p.add(a, x)
    
    to ensure the corresponding dictionary is.
  5. Except where used for shape inference, replace instances of t.data with t for all t.
  6. Be sure to update group['params'][p_idx] for each p_idx in need of update (those ignored will yield the original parameters in the fast weight collection). The latest fast weights will be returned by the inherited step function.
  7. Importantly, you need to register your new differentiable optimizer with higher using higher.register_optim to ensure that it is recognized as an option by the library's methods. You can do this at any point after the definition of an optimizer, and before any higher code involving that optimizer is called. For example, if you have implemented MyDiffOpt as a differentiable version of some optimizer MyOpt, register it by adding the line higher.register_optim(MyOpt, MyDiffOpt) after the classes are defined.

You can find examples of how to test for gradient correctness using finite difference methods in tests/test_optim.py. Please note that some stability tricks may be needed to avoid nans in the gradients. See the higher.optim.DifferentiableAdam implementation for examples of mitigation strategies, e.g. identify operations that yield exploding gradients, e.g. typically those taking the square roots of moving averages (which are intially zero), and register a backward hook using x.register_hook on the inputs x to those functions, using the helper function _get_mask_closure from higher.optim.

Related Projects

The following papers and codebases reference or directly use higher:

Is yours missing? Raise an issue or add it via a pull request!

Release Notes

See the changelog for release notes.

Known/Possible Issues

  • See the issues tracker for an up-to-date list.
  • No support (or planned support) for torch.nn.DataParallel at this time. This would require a rewrite of DataParallel. Please raise an issue on the pytorch issue tracker if this matters to you.
  • Some of the adaptative gradient-style differentiable optimizers may be unstable and yield NaNs when taking higher order gradients. Some tricks have been used to mitigate this risk. Please raise an issue if these are not sufficient in practice.
  • Second-order gradients may not work with some CUDNN modules (mostly RNNs). From PyTorch v1.3 onwards, wrapping the code where models are used with higher using the following context manager should solve the issue:
with torch.backends.cudnn.flags(enabled=False):
    # Your meta-learning code here...

License

higher is released under Apache License Version 2.0.

Thanks

Thanks to Adam Paszke whose gist was the source of inspiration (and starting point) for our method for monkey patching arbitrary torch.nn modules.

Thanks for the many interns, researchers, and engineers who helped road-test early versions of this library.

More Repositories

1

llama

Inference code for LLaMA models
Python
44,989
star
2

segment-anything

The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.
Jupyter Notebook
42,134
star
3

Detectron

FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.
Python
25,771
star
4

fairseq

Facebook AI Research Sequence-to-Sequence Toolkit written in Python.
Python
25,718
star
5

detectron2

Detectron2 is a platform for object detection, segmentation and other visual recognition tasks.
Python
25,567
star
6

fastText

Library for fast text representation and classification.
HTML
24,973
star
7

faiss

A library for efficient similarity search and clustering of dense vectors.
C++
24,035
star
8

audiocraft

Audiocraft is a library for audio processing and generation with deep learning. It features the state-of-the-art EnCodec audio compressor / tokenizer, along with MusicGen, a simple and controllable music generation LM with textual and melodic conditioning.
Python
19,691
star
9

codellama

Inference code for CodeLlama models
Python
13,303
star
10

sam2

The repository provides code for running inference with the Meta Segment Anything Model 2 (SAM 2), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.
Jupyter Notebook
11,906
star
11

detr

End-to-End Object Detection with Transformers
Python
11,076
star
12

seamless_communication

Foundational Models for State-of-the-Art Speech and Text Translation
Jupyter Notebook
10,584
star
13

ParlAI

A framework for training and evaluating AI models on a variety of openly available dialogue datasets.
Python
10,085
star
14

maskrcnn-benchmark

Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.
Python
9,104
star
15

pifuhd

High-Resolution 3D Human Digitization from A Single Image.
Python
8,923
star
16

hydra

Hydra is a framework for elegantly configuring complex applications
Python
8,550
star
17

nougat

Implementation of Nougat Neural Optical Understanding for Academic Documents
Python
8,088
star
18

AnimatedDrawings

Code to accompany "A Method for Animating Children's Drawings of the Human Figure"
Python
8,032
star
19

ImageBind

ImageBind One Embedding Space to Bind Them All
Python
7,630
star
20

llama-recipes

Scripts for fine-tuning Llama2 with composable FSDP & PEFT methods to cover single/multi-node GPUs. Supports default & custom datasets for applications such as summarization & question answering. Supporting a number of candid inference solutions such as HF TGI, VLLM for local or cloud deployment.Demo apps to showcase Llama2 for WhatsApp & Messenger
Jupyter Notebook
7,402
star
21

pytorch3d

PyTorch3D is FAIR's library of reusable components for deep learning with 3D data
Python
7,322
star
22

dinov2

PyTorch code and models for the DINOv2 self-supervised learning method.
Jupyter Notebook
7,278
star
23

DensePose

A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body
Jupyter Notebook
6,547
star
24

pytext

A natural language modeling framework based on PyTorch
Python
6,357
star
25

DiT

Official PyTorch Implementation of "Scalable Diffusion Models with Transformers"
Python
5,995
star
26

metaseq

Repo for external large-scale work
Python
5,947
star
27

demucs

Code for the paper Hybrid Spectrogram and Waveform Source Separation
Python
5,886
star
28

SlowFast

PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.
Python
5,678
star
29

mae

PyTorch implementation of MAE https//arxiv.org/abs/2111.06377
Python
5,495
star
30

mmf

A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)
Python
5,235
star
31

ConvNeXt

Code release for ConvNeXt model
Python
4,971
star
32

dino

PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO
Python
4,830
star
33

AugLy

A data augmentations library for audio, image, text, and video.
Python
4,739
star
34

Kats

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends.
Python
4,387
star
35

DrQA

Reading Wikipedia to Answer Open-Domain Questions
Python
4,374
star
36

sapiens

High-resolution models for human tasks.
Python
4,340
star
37

xformers

Hackable and optimized Transformers building blocks, supporting a composable construction.
Python
4,191
star
38

moco

PyTorch implementation of MoCo: https://arxiv.org/abs/1911.05722
Python
4,035
star
39

StarSpace

Learning embeddings for classification, retrieval and ranking.
C++
3,856
star
40

lingua

Meta Lingua: a lean, efficient, and easy-to-hack codebase to research LLMs.
Python
3,829
star
41

fairseq-lua

Facebook AI Research Sequence-to-Sequence Toolkit
Lua
3,765
star
42

nevergrad

A Python toolbox for performing gradient-free optimization
Python
3,446
star
43

deit

Official DeiT repository
Python
3,425
star
44

dlrm

An implementation of a deep learning recommendation model (DLRM)
Python
3,417
star
45

ReAgent

A platform for Reasoning systems (Reinforcement Learning, Contextual Bandits, etc.)
Python
3,395
star
46

LASER

Language-Agnostic SEntence Representations
Python
3,308
star
47

VideoPose3D

Efficient 3D human pose estimation in video using 2D keypoint trajectories
Python
3,294
star
48

PyTorch-BigGraph

Generate embeddings from large-scale graph-structured data.
Python
3,238
star
49

deepmask

Torch implementation of DeepMask and SharpMask
Lua
3,113
star
50

MUSE

A library for Multilingual Unsupervised or Supervised word Embeddings
Python
3,094
star
51

vissl

VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.
Jupyter Notebook
3,038
star
52

pytorchvideo

A deep learning library for video understanding research.
Python
2,885
star
53

XLM

PyTorch original implementation of Cross-lingual Language Model Pretraining.
Python
2,763
star
54

audio2photoreal

Code and dataset for photorealistic Codec Avatars driven from audio
Python
2,696
star
55

ijepa

Official codebase for I-JEPA, the Image-based Joint-Embedding Predictive Architecture. First outlined in the CVPR paper, "Self-supervised learning from images with a joint-embedding predictive architecture."
Python
2,670
star
56

jepa

PyTorch code and models for V-JEPA self-supervised learning from video.
Python
2,646
star
57

habitat-sim

A flexible, high-performance 3D simulator for Embodied AI research.
C++
2,621
star
58

co-tracker

CoTracker is a model for tracking any point (pixel) on a video.
Jupyter Notebook
2,564
star
59

hiplot

HiPlot makes understanding high dimensional data easy
TypeScript
2,481
star
60

fairscale

PyTorch extensions for high performance and large scale training.
Python
2,319
star
61

encodec

State-of-the-art deep learning based audio codec supporting both mono 24 kHz audio and stereo 48 kHz audio.
Python
2,313
star
62

InferSent

InferSent sentence embeddings
Jupyter Notebook
2,264
star
63

Pearl

A Production-ready Reinforcement Learning AI Agent Library brought by the Applied Reinforcement Learning team at Meta.
Python
2,193
star
64

pyrobot

PyRobot: An Open Source Robotics Research Platform
Python
2,109
star
65

darkforestGo

DarkForest, the Facebook Go engine.
C
2,108
star
66

ELF

An End-To-End, Lightweight and Flexible Platform for Game Research
C++
2,089
star
67

pycls

Codebase for Image Classification Research, written in PyTorch.
Python
2,053
star
68

esm

Evolutionary Scale Modeling (esm): Pretrained language models for proteins
Python
2,026
star
69

frankmocap

A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator
Python
1,972
star
70

video-nonlocal-net

Non-local Neural Networks for Video Classification
Python
1,931
star
71

SentEval

A python tool for evaluating the quality of sentence embeddings.
Python
1,930
star
72

habitat-lab

A modular high-level library to train embodied AI agents across a variety of tasks and environments.
Python
1,867
star
73

ResNeXt

Implementation of a classification framework from the paper Aggregated Residual Transformations for Deep Neural Networks
Lua
1,863
star
74

SparseConvNet

Submanifold sparse convolutional networks
C++
1,847
star
75

schedule_free

Schedule-Free Optimization in PyTorch
Python
1,842
star
76

chameleon

Repository for Meta Chameleon, a mixed-modal early-fusion foundation model from FAIR.
Python
1,811
star
77

swav

PyTorch implementation of SwAV https//arxiv.org/abs/2006.09882
Python
1,790
star
78

TensorComprehensions

A domain specific language to express machine learning workloads.
C++
1,747
star
79

Mask2Former

Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"
Python
1,638
star
80

fvcore

Collection of common code that's shared among different research projects in FAIR computer vision team.
Python
1,623
star
81

TransCoder

Public release of the TransCoder research project https://arxiv.org/pdf/2006.03511.pdf
Python
1,611
star
82

poincare-embeddings

PyTorch implementation of the NIPS-17 paper "PoincarΓ© Embeddings for Learning Hierarchical Representations"
Python
1,587
star
83

votenet

Deep Hough Voting for 3D Object Detection in Point Clouds
Python
1,563
star
84

pytorch_GAN_zoo

A mix of GAN implementations including progressive growing
Python
1,554
star
85

ClassyVision

An end-to-end PyTorch framework for image and video classification
Python
1,552
star
86

deepcluster

Deep Clustering for Unsupervised Learning of Visual Features
Python
1,544
star
87

UnsupervisedMT

Phrase-Based & Neural Unsupervised Machine Translation
Python
1,496
star
88

consistent_depth

We estimate dense, flicker-free, geometrically consistent depth from monocular video, for example hand-held cell phone video.
Python
1,479
star
89

ConvNeXt-V2

Code release for ConvNeXt V2 model
Python
1,454
star
90

Detic

Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".
Python
1,446
star
91

end-to-end-negotiator

Deal or No Deal? End-to-End Learning for Negotiation Dialogues
Python
1,368
star
92

DomainBed

DomainBed is a suite to test domain generalization algorithms
Python
1,355
star
93

multipathnet

A Torch implementation of the object detection network from "A MultiPath Network for Object Detection" (https://arxiv.org/abs/1604.02135)
Lua
1,349
star
94

CommAI-env

A platform for developing AI systems as described in A Roadmap towards Machine Intelligence - http://arxiv.org/abs/1511.08130
1,324
star
95

theseus

A library for differentiable nonlinear optimization
Python
1,306
star
96

DPR

Dense Passage Retriever - is a set of tools and models for open domain Q&A task.
Python
1,292
star
97

CrypTen

A framework for Privacy Preserving Machine Learning
Python
1,283
star
98

denoiser

Real Time Speech Enhancement in the Waveform Domain (Interspeech 2020)We provide a PyTorch implementation of the paper Real Time Speech Enhancement in the Waveform Domain. In which, we present a causal speech enhancement model working on the raw waveform that runs in real-time on a laptop CPU. The proposed model is based on an encoder-decoder architecture with skip-connections. It is optimized on both time and frequency domains, using multiple loss functions. Empirical evidence shows that it is capable of removing various kinds of background noise including stationary and non-stationary noises, as well as room reverb. Additionally, we suggest a set of data augmentation techniques applied directly on the raw waveform which further improve model performance and its generalization abilities.
Python
1,272
star
99

DeepSDF

Learning Continuous Signed Distance Functions for Shape Representation
Python
1,191
star
100

TimeSformer

The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"
Python
1,172
star