• Stars
    star
    1,292
  • Rank 34,889 (Top 0.8 %)
  • Language
    Python
  • License
    Other
  • Created almost 4 years ago
  • Updated 11 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval

Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the following paper:

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih. Dense Passage Retrieval for Open-Domain Question Answering. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6769–6781, 2020.

If you find this work useful, please cite the following paper:

@inproceedings{karpukhin-etal-2020-dense,
    title = "Dense Passage Retrieval for Open-Domain Question Answering",
    author = "Karpukhin, Vladimir and Oguz, Barlas and Min, Sewon and Lewis, Patrick and Wu, Ledell and Edunov, Sergey and Chen, Danqi and Yih, Wen-tau",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.emnlp-main.550",
    doi = "10.18653/v1/2020.emnlp-main.550",
    pages = "6769--6781",
}

If you're interesting in reproducing experimental results in the paper based on our model checkpoints (i.e., don't want to train the encoders from scratch), you might consider using the Pyserini toolkit, which has the experiments nicely packaged in via pip. Their toolkit also reports higher BM25 and hybrid scores.

Features

  1. Dense retriever model is based on bi-encoder architecture.
  2. Extractive Q&A reader&ranker joint model inspired by this paper.
  3. Related data pre- and post- processing tools.
  4. Dense retriever component for inference time logic is based on FAISS index.

New (March 2021) release

DPR codebase is upgraded with a number of enhancements and new models. Major changes:

  1. Hydra-based configuration for all the command line tools exept the data loader (to be converted soon)
  2. Pluggable data processing layer to support custom datasets
  3. New retrieval model checkpoint with better perfromance.

New (March 2021) retrieval model

A new bi-encoder model trained on NQ dataset only is now provided: a new checkpoint, training data, retrieval results and wikipedia embeddings. It is trained on the original DPR NQ train set and its version where hard negatives are mined using DPR index itself using the previous NQ checkpoint. A Bi-encoder model is trained from scratch using this new training data combined with our original NQ training data. This training scheme gives a nice retrieval performance boost.

New vs old top-k documents retrieval accuracy on NQ test set (3610 questions).

Top-k passages Original DPR NQ model New DPR model
1 45.87 52.47
5 68.14 72.24
20 79.97 81.33
100 85.87 87.29

New model downloadable resources names (see how to use download_data script below):

Checkpoint: checkpoint.retriever.single-adv-hn.nq.bert-base-encoder

New training data: data.retriever.nq-adv-hn-train

Retriever resutls for NQ test set: data.retriever_results.nq.single-adv-hn.test

Wikipedia embeddings: data.retriever_results.nq.single-adv-hn.wikipedia_passages

Installation

Installation from the source. Python's virtual or Conda environments are recommended.

git clone [email protected]:facebookresearch/DPR.git
cd DPR
pip install .

DPR is tested on Python 3.6+ and PyTorch 1.2.0+. DPR relies on third-party libraries for encoder code implementations. It currently supports Huggingface (version <=3.1.0) BERT, Pytext BERT and Fairseq RoBERTa encoder models. Due to generality of the tokenization process, DPR uses Huggingface tokenizers as of now. So Huggingface is the only required dependency, Pytext & Fairseq are optional. Install them separately if you want to use those encoders.

Resources & Data formats

First, you need to prepare data for either retriever or reader training. Each of the DPR components has its own input/output data formats. You can see format descriptions below. DPR provides NQ & Trivia preprocessed datasets (and model checkpoints) to be downloaded from the cloud using our dpr/data/download_data.py tool. One needs to specify the resource name to be downloaded. Run 'python data/download_data.py' to see all options.

python data/download_data.py \
	--resource {key from download_data.py's RESOURCES_MAP}  \
	[optional --output_dir {your location}]

The resource name matching is prefix-based. So if you need to download all data resources, just use --resource data.

Retriever input data format

The default data format of the Retriever training data is JSON. It contains pools of 2 types of negative passages per question, as well as positive passages and some additional information.

[
  {
	"question": "....",
	"answers": ["...", "...", "..."],
	"positive_ctxs": [{
		"title": "...",
		"text": "...."
	}],
	"negative_ctxs": ["..."],
	"hard_negative_ctxs": ["..."]
  },
  ...
]

Elements' structure for negative_ctxs & hard_negative_ctxs is exactly the same as for positive_ctxs. The preprocessed data available for downloading also contains some extra attributes which may be useful for model modifications (like bm25 scores per passage). Still, they are not currently in use by DPR.

You can download prepared NQ dataset used in the paper by using 'data.retriever.nq' key prefix. Only dev & train subsets are available in this format. We also provide question & answers only CSV data files for all train/dev/test splits. Those are used for the model evaluation since our NQ preprocessing step looses a part of original samples set. Use 'data.retriever.qas.*' resource keys to get respective sets for evaluation.

python data/download_data.py
	--resource data.retriever
	[optional --output_dir {your location}]

DPR data formats and custom processing

One can use their own data format and custom data parsing & loading logic by inherting from DPR's Dataset classes in dpr/data/{biencoder|retriever|reader}_data.py files and implementing load_data() and getitem() methods. See DPR hydra configuration instructions.

Retriever training

Retriever training quality depends on its effective batch size. The one reported in the paper used 8 x 32GB GPUs. In order to start training on one machine:

python train_dense_encoder.py \
train_datasets=[list of train datasets, comma separated without spaces] \
dev_datasets=[list of dev datasets, comma separated without spaces] \
train=biencoder_local \
output_dir={path to checkpoints dir}

Example for NQ dataset

python train_dense_encoder.py \
train_datasets=[nq_train] \
dev_datasets=[nq_dev] \
train=biencoder_local \
output_dir={path to checkpoints dir}

DPR uses HuggingFace BERT-base as the encoder by default. Other ready options include Fairseq's ROBERTA and Pytext BERT models. One can select them by either changing encoder configuration files (conf/encoder/hf_bert.yaml) or providing a new configuration file in conf/encoder dir and enabling it with encoder={new file name} command line parameter.

Notes:

  • If you want to use pytext bert or fairseq roberta, you will need to download pre-trained weights and specify encoder.pretrained_file parameter. Specify the dir location of the downloaded files for 'pretrained.fairseq.roberta-base' resource prefix for RoBERTa model or the file path for pytext BERT (resource name 'pretrained.pytext.bert-base.model').
  • Validation and checkpoint saving happens according to train.eval_per_epoch parameter value.
  • There is no stop condition besides a specified amount of epochs to train (train.num_train_epochs configuration parameter).
  • Every evaluation saves a model checkpoint.
  • The best checkpoint is logged in the train process output.
  • Regular NLL classification loss validation for bi-encoder training can be replaced with average rank evaluation. It aggregates passage and question vectors from the input data passages pools, does large similarity matrix calculation for those representations and then averages the rank of the gold passage for each question. We found this metric more correlating with the final retrieval performance vs nll classification loss. Note however that this average rank validation works differently in DistributedDataParallel vs DataParallel PyTorch modes. See train.val_av_rank_* set of parameters to enable this mode and modify its settings.

See the section 'Best hyperparameter settings' below as e2e example for our best setups.

Retriever inference

Generating representation vectors for the static documents dataset is a highly parallelizable process which can take up to a few days if computed on a single GPU. You might want to use multiple available GPU servers by running the script on each of them independently and specifying their own shards.

python generate_dense_embeddings.py \
	model_file={path to biencoder checkpoint} \
	ctx_src={name of the passages resource, set to dpr_wiki to use our original wikipedia split} \
	shard_id={shard_num, 0-based} num_shards={total number of shards} \
	out_file={result files location + name PREFX}	

The name of the resource for ctx_src parameter or just the source name from conf/ctx_sources/default_sources.yaml file.

Note: you can use much large batch size here compared to training mode. For example, setting batch_size 128 for 2 GPU(16gb) server should work fine. You can download already generated wikipedia embeddings from our original model (trained on NQ dataset) using resource key 'data.retriever_results.nq.single.wikipedia_passages'. Embeddings resource name for the new better model 'data.retriever_results.nq.single-adv-hn.wikipedia_passages'

We generally use the following params on 50 2-gpu nodes: batch_size=128 shard_id=0 num_shards=50

Retriever validation against the entire set of documents:

python dense_retriever.py \
	model_file={path to a checkpoint downloaded from our download_data.py as 'checkpoint.retriever.single.nq.bert-base-encoder'} \
	qa_dataset={the name os the test source} \
	ctx_datatsets=[{list of passage sources's names, comma separated without spaces}] \
	encoded_ctx_files=[{list of encoded document files glob expression, comma separated without spaces}] \
	out_file={path to output json file with results} 
	

For example, If your generated embeddings fpr two passages set as ~/myproject/embeddings_passages1/wiki_passages_* and ~/myproject/embeddings_passages2/wiki_passages_* files and want to evaluate on NQ dataset:

python dense_retriever.py \
	model_file={path to a checkpoint file} \
	qa_dataset=nq_test \
	ctx_datatsets=[dpr_wiki] \
	encoded_ctx_files=[\"~/myproject/embeddings_passages1/wiki_passages_*\",\"~/myproject/embeddings_passages2/wiki_passages_*\"] \
	out_file={path to output json file with results} 

The tool writes retrieved results for subsequent reader model training into specified out_file. It is a json with the following format:

[
    {
        "question": "...",
        "answers": ["...", "...", ... ],
        "ctxs": [
            {
                "id": "...", # passage id from database tsv file
                "title": "",
                "text": "....",
                "score": "...",  # retriever score
                "has_answer": true|false
     },
]

Results are sorted by their similarity score, from most relevant to least relevant.

By default, dense_retriever uses exhaustive search process, but you can opt in to use lossy index types. We provide HNSW and HNSW_SQ index options. Enabled them by indexer=hnsw or indexer=hnsw_sq command line arguments. Note that using this index may be useless from the research point of view since their fast retrieval process comes at the cost of much longer indexing time and higher RAM usage. The similarity score provided is the dot product for the default case of exhaustive search (indexer=flat) and L2 distance in a modified representations space in case of HNSW index.

Reader model training

python train_extractive_reader.py \
	encoder.sequence_length=350 \
	train_files={path to the retriever train set results file} \
	dev_files={path to the retriever dev set results file}  \
	output_dir={path to output dir}

Default hyperparameters are set for a single node with 8 gpus setup. Modify them as needed in the conf/train/extractive_reader_default.yaml and conf/extractive_reader_train_cfg.yaml cpnfiguration files or override specific parameters from the command line. First time run will preprocess train_files & dev_files and convert them into serialized set of .pkl files in the same locaion and will use them on all subsequent runs.

Notes:

  • If you want to use pytext bert or fairseq roberta, you will need to download pre-trained weights and specify encoder.pretrained_file parameter. Specify the dir location of the downloaded files for 'pretrained.fairseq.roberta-base' resource prefix for RoBERTa model or the file path for pytext BERT (resource name 'pretrained.pytext.bert-base.model').
  • Reader training pipeline does model validation every train.eval_step batches
  • Like the bi-encoder, it saves model checkpoints on every validation
  • Like the bi-encoder, there is no stop condition besides a specified amount of epochs to train.
  • Like the bi-encoder, there is no best checkpoint selection logic, so one needs to select that based on dev set validation performance which is logged in the train process output.
  • Our current code only calculates the Exact Match metric.

Reader model inference

In order to make an inference, run train_reader.py without specifying train_files. Make sure to specify model_file with the path to the checkpoint, passages_per_question_predict with number of passages per question (being used when saving the prediction file), and eval_top_docs with a list of top passages threshold values from which to choose question's answer span (to be printed as logs). The example command line is as follows.

python train_extractive_reader.py \
  prediction_results_file={path to a file to write the results to} \
  eval_top_docs=[10,20,40,50,80,100] \
  dev_files={path to the retriever results file to evaluate} \
  model_file= {path to the reader checkpoint} \
  train.dev_batch_size=80 \
  passages_per_question_predict=100 \
  encoder.sequence_length=350

Distributed training

Use Pytorch's distributed training launcher tool:

python -m torch.distributed.launch \
	--nproc_per_node={WORLD_SIZE}  {non distributed scipt name & parameters}

Note:

  • all batch size related parameters are specified per gpu in distributed mode(DistributedDataParallel) and for all available gpus in DataParallel (single node - multi gpu) mode.

Best hyperparameter settings

e2e example with the best settings for NQ dataset.

1. Download all retriever training and validation data:

python data/download_data.py --resource data.wikipedia_split.psgs_w100
python data/download_data.py --resource data.retriever.nq
python data/download_data.py --resource data.retriever.qas.nq

2. Biencoder(Retriever) training in the single set mode.

We used distributed training mode on a single 8 GPU x 32 GB server

python -m torch.distributed.launch --nproc_per_node=8
train_dense_encoder.py \
train=biencoder_nq \
train_datasets=[nq_train] \
dev_datasets=[nq_dev] \
train=biencoder_nq \
output_dir={your output dir}

New model training combines two NQ datatsets:

python -m torch.distributed.launch --nproc_per_node=8
train_dense_encoder.py \
train=biencoder_nq \
train_datasets=[nq_train,nq_train_hn1] \
dev_datasets=[nq_dev] \
train=biencoder_nq \
output_dir={your output dir}

This takes about a day to complete the training for 40 epochs. It switches to Average Rank validation on epoch 30 and it should be around 25 or less at the end. The best checkpoint for bi-encoder is usually the last, but it should not be so different if you take any after epoch ~ 25.

3. Generate embeddings for Wikipedia.

Just use instructions for "Generating representations for large documents set". It takes about 40 minutes to produce 21 mln passages representation vectors on 50 2 GPU servers.

4. Evaluate retrieval accuracy and generate top passage results for each of the train/dev/test datasets.

python dense_retriever.py \
	model_file={path to the best checkpoint or use our proivded checkpoints (Resource names like checkpoint.retriever.*)  } \
	qa_dataset=nq_test \
	ctx_datatsets=[dpr_wiki] \
	encoded_ctx_files=["{glob expression for generated embedding files}"] \
	out_file={path to the output file}

Adjust batch_size based on the available number of GPUs, 64-128 should work for 2 GPU server.

5. Reader training

We trained reader model for large datasets using a single 8 GPU x 32 GB server. All the default parameters are already set to our best NQ settings. Please also download data.gold_passages_info.nq_train & data.gold_passages_info.nq_dev resources for NQ datatset - they are used for special NQ only heuristics when preprocessing the data for the NQ reader training. If you already run reader trianign on NQ data without gold_passages_src & gold_passages_src_dev specified, please delete the corresponding .pkl files so that thye will be re-generated.

python train_extractive_reader.py \
	encoder.sequence_length=350 \
	train_files={path to the retriever train set results file} \
	dev_files={path to the retriever dev set results file}  \
	gold_passages_src={path to data.gold_passages_info.nq_train file} \
	gold_passages_src_dev={path to data.gold_passages_info.nq_dev file} \
	output_dir={path to output dir}

We found that using the learning rate above works best with static schedule, so one needs to stop training manually based on evaluation performance dynamics. Our best results were achieved on 16-18 training epochs or after ~60k model updates.

We provide all input and intermediate results for e2e pipeline for NQ dataset and most of the similar resources for Trivia.

Misc.

  • TREC validation requires regexp based matching. We support only retriever validation in the regexp mode. See --match parameter option.
  • WebQ validation requires entity normalization, which is not included as of now.

License

DPR is CC-BY-NC 4.0 licensed as of now.

More Repositories

1

llama

Inference code for LLaMA models
Python
44,989
star
2

segment-anything

The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.
Jupyter Notebook
42,134
star
3

Detectron

FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.
Python
25,771
star
4

fairseq

Facebook AI Research Sequence-to-Sequence Toolkit written in Python.
Python
25,718
star
5

detectron2

Detectron2 is a platform for object detection, segmentation and other visual recognition tasks.
Python
25,567
star
6

fastText

Library for fast text representation and classification.
HTML
24,973
star
7

faiss

A library for efficient similarity search and clustering of dense vectors.
C++
24,035
star
8

audiocraft

Audiocraft is a library for audio processing and generation with deep learning. It features the state-of-the-art EnCodec audio compressor / tokenizer, along with MusicGen, a simple and controllable music generation LM with textual and melodic conditioning.
Python
18,693
star
9

codellama

Inference code for CodeLlama models
Python
13,303
star
10

detr

End-to-End Object Detection with Transformers
Python
11,076
star
11

ParlAI

A framework for training and evaluating AI models on a variety of openly available dialogue datasets.
Python
10,085
star
12

seamless_communication

Foundational Models for State-of-the-Art Speech and Text Translation
Jupyter Notebook
9,653
star
13

maskrcnn-benchmark

Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.
Python
9,104
star
14

pifuhd

High-Resolution 3D Human Digitization from A Single Image.
Python
8,923
star
15

hydra

Hydra is a framework for elegantly configuring complex applications
Python
8,044
star
16

AnimatedDrawings

Code to accompany "A Method for Animating Children's Drawings of the Human Figure"
Python
8,032
star
17

ImageBind

ImageBind One Embedding Space to Bind Them All
Python
7,630
star
18

nougat

Implementation of Nougat Neural Optical Understanding for Academic Documents
Python
7,568
star
19

llama-recipes

Scripts for fine-tuning Llama2 with composable FSDP & PEFT methods to cover single/multi-node GPUs. Supports default & custom datasets for applications such as summarization & question answering. Supporting a number of candid inference solutions such as HF TGI, VLLM for local or cloud deployment.Demo apps to showcase Llama2 for WhatsApp & Messenger
Jupyter Notebook
7,402
star
20

pytorch3d

PyTorch3D is FAIR's library of reusable components for deep learning with 3D data
Python
7,322
star
21

dinov2

PyTorch code and models for the DINOv2 self-supervised learning method.
Jupyter Notebook
7,278
star
22

DensePose

A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body
Jupyter Notebook
6,547
star
23

pytext

A natural language modeling framework based on PyTorch
Python
6,357
star
24

metaseq

Repo for external large-scale work
Python
5,947
star
25

demucs

Code for the paper Hybrid Spectrogram and Waveform Source Separation
Python
5,886
star
26

SlowFast

PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.
Python
5,678
star
27

mae

PyTorch implementation of MAE https//arxiv.org/abs/2111.06377
Python
5,495
star
28

mmf

A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)
Python
5,235
star
29

ConvNeXt

Code release for ConvNeXt model
Python
4,971
star
30

dino

PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO
Python
4,830
star
31

DiT

Official PyTorch Implementation of "Scalable Diffusion Models with Transformers"
Python
4,761
star
32

AugLy

A data augmentations library for audio, image, text, and video.
Python
4,739
star
33

Kats

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends.
Python
4,387
star
34

DrQA

Reading Wikipedia to Answer Open-Domain Questions
Python
4,374
star
35

xformers

Hackable and optimized Transformers building blocks, supporting a composable construction.
Python
4,191
star
36

moco

PyTorch implementation of MoCo: https://arxiv.org/abs/1911.05722
Python
4,035
star
37

StarSpace

Learning embeddings for classification, retrieval and ranking.
C++
3,856
star
38

fairseq-lua

Facebook AI Research Sequence-to-Sequence Toolkit
Lua
3,765
star
39

nevergrad

A Python toolbox for performing gradient-free optimization
Python
3,446
star
40

deit

Official DeiT repository
Python
3,425
star
41

dlrm

An implementation of a deep learning recommendation model (DLRM)
Python
3,417
star
42

ReAgent

A platform for Reasoning systems (Reinforcement Learning, Contextual Bandits, etc.)
Python
3,395
star
43

LASER

Language-Agnostic SEntence Representations
Python
3,308
star
44

VideoPose3D

Efficient 3D human pose estimation in video using 2D keypoint trajectories
Python
3,294
star
45

PyTorch-BigGraph

Generate embeddings from large-scale graph-structured data.
Python
3,238
star
46

deepmask

Torch implementation of DeepMask and SharpMask
Lua
3,113
star
47

MUSE

A library for Multilingual Unsupervised or Supervised word Embeddings
Python
3,094
star
48

vissl

VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.
Jupyter Notebook
3,038
star
49

pytorchvideo

A deep learning library for video understanding research.
Python
2,885
star
50

XLM

PyTorch original implementation of Cross-lingual Language Model Pretraining.
Python
2,763
star
51

hiplot

HiPlot makes understanding high dimensional data easy
TypeScript
2,481
star
52

ijepa

Official codebase for I-JEPA, the Image-based Joint-Embedding Predictive Architecture. First outlined in the CVPR paper, "Self-supervised learning from images with a joint-embedding predictive architecture."
Python
2,381
star
53

fairscale

PyTorch extensions for high performance and large scale training.
Python
2,319
star
54

audio2photoreal

Code and dataset for photorealistic Codec Avatars driven from audio
Python
2,316
star
55

encodec

State-of-the-art deep learning based audio codec supporting both mono 24 kHz audio and stereo 48 kHz audio.
Python
2,313
star
56

habitat-sim

A flexible, high-performance 3D simulator for Embodied AI research.
C++
2,299
star
57

InferSent

InferSent sentence embeddings
Jupyter Notebook
2,264
star
58

co-tracker

CoTracker is a model for tracking any point (pixel) on a video.
Jupyter Notebook
2,240
star
59

Pearl

A Production-ready Reinforcement Learning AI Agent Library brought by the Applied Reinforcement Learning team at Meta.
Python
2,193
star
60

pyrobot

PyRobot: An Open Source Robotics Research Platform
Python
2,109
star
61

darkforestGo

DarkForest, the Facebook Go engine.
C
2,108
star
62

ELF

An End-To-End, Lightweight and Flexible Platform for Game Research
C++
2,089
star
63

pycls

Codebase for Image Classification Research, written in PyTorch.
Python
2,053
star
64

esm

Evolutionary Scale Modeling (esm): Pretrained language models for proteins
Python
2,026
star
65

frankmocap

A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator
Python
1,972
star
66

video-nonlocal-net

Non-local Neural Networks for Video Classification
Python
1,931
star
67

SentEval

A python tool for evaluating the quality of sentence embeddings.
Python
1,930
star
68

ResNeXt

Implementation of a classification framework from the paper Aggregated Residual Transformations for Deep Neural Networks
Lua
1,863
star
69

SparseConvNet

Submanifold sparse convolutional networks
C++
1,847
star
70

swav

PyTorch implementation of SwAV https//arxiv.org/abs/2006.09882
Python
1,790
star
71

TensorComprehensions

A domain specific language to express machine learning workloads.
C++
1,747
star
72

Mask2Former

Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"
Python
1,638
star
73

habitat-lab

A modular high-level library to train embodied AI agents across a variety of tasks and environments.
Python
1,636
star
74

fvcore

Collection of common code that's shared among different research projects in FAIR computer vision team.
Python
1,623
star
75

TransCoder

Public release of the TransCoder research project https://arxiv.org/pdf/2006.03511.pdf
Python
1,611
star
76

poincare-embeddings

PyTorch implementation of the NIPS-17 paper "PoincarΓ© Embeddings for Learning Hierarchical Representations"
Python
1,587
star
77

votenet

Deep Hough Voting for 3D Object Detection in Point Clouds
Python
1,563
star
78

pytorch_GAN_zoo

A mix of GAN implementations including progressive growing
Python
1,554
star
79

ClassyVision

An end-to-end PyTorch framework for image and video classification
Python
1,552
star
80

deepcluster

Deep Clustering for Unsupervised Learning of Visual Features
Python
1,544
star
81

higher

higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.
Python
1,524
star
82

UnsupervisedMT

Phrase-Based & Neural Unsupervised Machine Translation
Python
1,496
star
83

consistent_depth

We estimate dense, flicker-free, geometrically consistent depth from monocular video, for example hand-held cell phone video.
Python
1,479
star
84

Detic

Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".
Python
1,446
star
85

end-to-end-negotiator

Deal or No Deal? End-to-End Learning for Negotiation Dialogues
Python
1,368
star
86

multipathnet

A Torch implementation of the object detection network from "A MultiPath Network for Object Detection" (https://arxiv.org/abs/1604.02135)
Lua
1,349
star
87

CommAI-env

A platform for developing AI systems as described in A Roadmap towards Machine Intelligence - http://arxiv.org/abs/1511.08130
1,324
star
88

theseus

A library for differentiable nonlinear optimization
Python
1,306
star
89

ConvNeXt-V2

Code release for ConvNeXt V2 model
Python
1,300
star
90

CrypTen

A framework for Privacy Preserving Machine Learning
Python
1,283
star
91

denoiser

Real Time Speech Enhancement in the Waveform Domain (Interspeech 2020)We provide a PyTorch implementation of the paper Real Time Speech Enhancement in the Waveform Domain. In which, we present a causal speech enhancement model working on the raw waveform that runs in real-time on a laptop CPU. The proposed model is based on an encoder-decoder architecture with skip-connections. It is optimized on both time and frequency domains, using multiple loss functions. Empirical evidence shows that it is capable of removing various kinds of background noise including stationary and non-stationary noises, as well as room reverb. Additionally, we suggest a set of data augmentation techniques applied directly on the raw waveform which further improve model performance and its generalization abilities.
Python
1,272
star
92

DeepSDF

Learning Continuous Signed Distance Functions for Shape Representation
Python
1,191
star
93

TimeSformer

The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"
Python
1,172
star
94

House3D

a Realistic and Rich 3D Environment
C++
1,167
star
95

MaskFormer

Per-Pixel Classification is Not All You Need for Semantic Segmentation (NeurIPS 2021, spotlight)
Python
1,149
star
96

LAMA

LAnguage Model Analysis
Python
1,104
star
97

fastMRI

A large-scale dataset of both raw MRI measurements and clinical MRI images.
Python
1,098
star
98

meshrcnn

code for Mesh R-CNN, ICCV 2019
Python
1,083
star
99

mixup-cifar10

mixup: Beyond Empirical Risk Minimization
Python
1,073
star
100

DomainBed

DomainBed is a suite to test domain generalization algorithms
Python
1,071
star