• Stars
    star
    1,496
  • Rank 30,171 (Top 0.7 %)
  • Language
    Python
  • License
    Other
  • Created over 5 years ago
  • Updated 12 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Phrase-Based & Neural Unsupervised Machine Translation

Unsupervised Machine Translation

This repository contains the original implementation of the unsupervised PBSMT and NMT models presented in
Phrase-Based & Neural Unsupervised Machine Translation (EMNLP 2018).

Note: for the NMT approach, we recommend you have a look at Cross-lingual Language Model Pretraining and the associated GitHub repository https://github.com/facebookresearch/XLM which contains a better model and a more efficient implementation of unsupervised machine translation.

Model

The NMT implementation supports:

  • Three machine translation architectures (seq2seq, biLSTM + attention, Transformer)
  • Ability to share an arbitrary number of parameters across models / languages
  • Denoising auto-encoder training
  • Parallel data training
  • Back-parallel data training
  • On-the-fly multithreaded generation of back-parallel data

As well as other features not used in the original paper (and left for future work):

  • Arbitrary number of languages during training
  • Language model pre-training / co-training with shared parameters
  • Adversarial training

The PBSMT implementation supports:

  • Unsupervised phrase-table generation scripts
  • Automated Moses training

Dependencies

  • Python 3
  • NumPy
  • PyTorch (currently tested on version 0.5)
  • Moses (clean and tokenize text / train PBSMT model)
  • fastBPE (generate and apply BPE codes)
  • fastText (generate embeddings)
  • MUSE (generate cross-lingual embeddings)

For the NMT implementation, the NMT/get_data_enfr.sh script will take care of installing everything (except PyTorch). The same script is also provided for English-German: NMT/get_data_deen.sh. The NMT implementation only requires Moses preprocessing scripts, which does not require to install Moses.

The PBSMT implementation will require a working implementation of Moses, which you will have to install by yourself. Compiling Moses is not always straightforward, a good alternative is to download the binary executables.

Unsupervised NMT

Download / preprocess data

The first thing to do to run the NMT model is to download and preprocess data. To do so, just run:

git clone https://github.com/facebookresearch/UnsupervisedMT.git
cd UnsupervisedMT/NMT
./get_data_enfr.sh

The script will successively:

  • Install tools
    • Download Moses scripts
    • Download and compile fastBPE
    • Download and compile fastText
  • Download and prepare monolingual data
    • Download / extract / tokenize monolingual data
    • Generate and apply BPE codes on monolingual data
    • Extract training vocabulary
    • Binarize monolingual data
  • Download and prepare parallel data (for evaluation)
    • Download / extract / tokenize parallel data
    • Apply BPE codes on parallel data with training vocabulary
    • Binarize parallel data
  • Train cross-lingual embeddings

get_data_enfr.sh contains a few parameters defined at the beginning of the file:

  • N_MONO number of monolingual sentences for each language (default 10000000)
  • CODES number of BPE codes (default 60000)
  • N_THREADS number of threads in data preprocessing (default 48)
  • N_EPOCHS number of fastText epochs (default 10)

Adding more monolingual data will improve the performance, but will take longer to preprocess and train (10 million sentences is what was used in the paper for NMT). The script should output a data summary that contains the location of all files required to start experiments:

Monolingual training data:
    EN: ./data/mono/all.en.tok.60000.pth
    FR: ./data/mono/all.fr.tok.60000.pth
Parallel validation data:
    EN: ./data/para/dev/newstest2013-ref.en.60000.pth
    FR: ./data/para/dev/newstest2013-ref.fr.60000.pth
Parallel test data:
    EN: ./data/para/dev/newstest2014-fren-src.en.60000.pth
    FR: ./data/para/dev/newstest2014-fren-src.fr.60000.pth

Concatenated data in: ./data/mono/all.en-fr.60000
Cross-lingual embeddings in: ./data/mono/all.en-fr.60000.vec

Note that there are several ways to train cross-lingual embeddings:

  • Train monolingual embeddings separately for each language, and align them with MUSE (please refer to the original paper for more details).
  • Concatenate the source and target monolingual corpora in a single file, and train embeddings with fastText on that generated file (this is what is implemented in the get_data_enfr.sh script).

The second method works better when the source and target languages are similar and share a lot of common words (such as French and English). However, when the overlap between the source and target vocabulary is too small, the alignment will be very poor and you should opt for the first method using MUSE to generate your cross-lingual embeddings.

Train the NMT model

Given binarized monolingual training data, parallel evaluation data, and pretrained cross-lingual embeddings, you can train the model using the following command:

python main.py 

## main parameters
--exp_name test                             # experiment name

## network architecture
--transformer True                          # use a transformer architecture
--n_enc_layers 4                            # use 4 layers in the encoder
--n_dec_layers 4                            # use 4 layers in the decoder

## parameters sharing
--share_enc 3                               # share 3 out of the 4 encoder layers
--share_dec 3                               # share 3 out of the 4 decoder layers
--share_lang_emb True                       # share lookup tables
--share_output_emb True                     # share projection output layers

## datasets location
--langs 'en,fr'                             # training languages (English, French)
--n_mono -1                                 # number of monolingual sentences (-1 for everything)
--mono_dataset $MONO_DATASET                # monolingual dataset
--para_dataset $PARA_DATASET                # parallel dataset

## denoising auto-encoder parameters
--mono_directions 'en,fr'                   # train the auto-encoder on English and French
--word_shuffle 3                            # shuffle words
--word_dropout 0.1                          # randomly remove words
--word_blank 0.2                            # randomly blank out words

## back-translation directions
--pivo_directions 'en-fr-en,fr-en-fr'       # back-translation directions (en->fr->en and fr->en->fr)

## pretrained embeddings
--pretrained_emb $PRETRAINED                # cross-lingual embeddings path
--pretrained_out True                       # also pretrain output layers

## dynamic loss coefficients
--lambda_xe_mono '0:1,100000:0.1,300000:0'  # auto-encoder loss coefficient
--lambda_xe_otfd 1                          # back-translation loss coefficient

## CPU on-the-fly generation
--otf_num_processes 30                      # number of CPU jobs for back-parallel data generation
--otf_sync_params_every 1000                # CPU parameters synchronization frequency

## optimization
--enc_optimizer adam,lr=0.0001              # model optimizer
--group_by_size True                        # group sentences by length inside batches
--batch_size 32                             # batch size
--epoch_size 500000                         # epoch size
--stopping_criterion bleu_en_fr_valid,10    # stopping criterion
--freeze_enc_emb False                      # freeze encoder embeddings
--freeze_dec_emb False                      # freeze decoder embeddings


## With
MONO_DATASET='en:./data/mono/all.en.tok.60000.pth,,;fr:./data/mono/all.fr.tok.60000.pth,,'
PARA_DATASET='en-fr:,./data/para/dev/newstest2013-ref.XX.60000.pth,./data/para/dev/newstest2014-fren-src.XX.60000.pth'
PRETRAINED='./data/mono/all.en-fr.60000.vec'

Some parameters must respect a particular format:

  • langs
    • A list of languages, sorted by language ID.
    • en,fr for "English and French"
    • de,en,es,fr for "German, English, Spanish and French"
  • mono_dataset
    • A dictionary that maps a language to train, validation and test files.
    • Validation and test files are optional (usually we only need them for training).
    • en:train.en,valid.en,test.en;fr:train.fr,valid.fr,test.fr
  • para_dataset
    • A dictionary that maps a language pair to train, validation and test files.
    • Training file is optional (in unsupervised MT we only use parallel data for evaluation).
    • en-fr:train.en-fr.XX,valid.en-fr.XX,test.en-fr.XX to indicate the validation and test paths.
  • mono_directions
    • A list of languages on which we want to train the denoising auto-encoder.
    • en,fr to train the auto-encoder both on English and French.
  • para_directions
    • A list of tuples on which we want to train the MT system in a standard supervised way.
    • en-fr,fr-de will train the model in both the en->fr and fr->de directions.
    • Requires to provide the model with parallel data.
  • pivo_directions
    • A list of triplets on which we want to perform back-translation.
    • fr-en-fr,en-fr-en will train the model on the fr->en->fr and en->fr->en directions.
    • en-fr-de,de-fr-en will train the model on the en->fr->de and de->fr->en directions (assuming that fr is the unknown language, and that English-German parallel data is provided).

Other parameters:

  • --otf_num_processes 30 indicates that 30 CPU threads will be generating back-translation data on the fly, using the current model parameters
  • --otf_sync_params_every 1000 indicates that models on CPU threads will be synchronized every 1000 training steps
  • --lambda_xe_otfd 1 means that the coefficient associated to the back-translation loss is fixed to a constant of 1
  • --lambda_xe_mono '0:1,100000:0.1,300000:0' means that the coefficient associated to the denoising auto-encoder loss is initially set to 1, will linearly decrease to 0.1 over the first 100000 steps, then to 0 over the following 200000 steps, and will finally be equal to 0 during the remaining of the experiment (i.e. we train with back-translation only)

Putting all this together, the training command becomes:

python main.py --exp_name test --transformer True --n_enc_layers 4 --n_dec_layers 4 --share_enc 3 --share_dec 3 --share_lang_emb True --share_output_emb True --langs 'en,fr' --n_mono -1 --mono_dataset 'en:./data/mono/all.en.tok.60000.pth,,;fr:./data/mono/all.fr.tok.60000.pth,,' --para_dataset 'en-fr:,./data/para/dev/newstest2013-ref.XX.60000.pth,./data/para/dev/newstest2014-fren-src.XX.60000.pth' --mono_directions 'en,fr' --word_shuffle 3 --word_dropout 0.1 --word_blank 0.2 --pivo_directions 'fr-en-fr,en-fr-en' --pretrained_emb './data/mono/all.en-fr.60000.vec' --pretrained_out True --lambda_xe_mono '0:1,100000:0.1,300000:0' --lambda_xe_otfd 1 --otf_num_processes 30 --otf_sync_params_every 1000 --enc_optimizer adam,lr=0.0001 --epoch_size 500000 --stopping_criterion bleu_en_fr_valid,10

On newstest2014 en-fr, the above command should give above 23.0 BLEU after 25 epochs (i.e. after one day of training on a V100).

Unsupervised PBSMT

Running the PBSMT approach requires to have a working version of Moses. On some systems Moses is not very straightforward to compile, and it is sometimes much simpler to download the binaries directly.

Once you have a working version of Moses, edit the MOSES_PATH variable inside the PBSMT/run.sh script to indicate the location of Moses directory. Then, simply run:

cd PBSMT
./run.sh

The script will successively:

  • Install tools
    • Check Moses files
    • Download MUSE and download evaluation files
  • Download pretrained word embeddings
  • Download and prepare monolingual data
    • Download / extract / tokenize monolingual data
    • Learn truecasers and apply them on monolingual data
    • Learn and binarize language models for Moses decoding
  • Download and prepare parallel data (for evaluation):
    • Download / extract / tokenize parallel data
    • Truecase parallel data
  • Run MUSE to generate cross-lingual embeddings
  • Generate an unsupervised phrase-table using MUSE alignments
  • Run Moses
    • Create Moses configuration file
    • Run Moses on test sentences
    • Detruecase translations
  • Evaluate translations

run.sh contains a few parameters defined at the beginning of the file:

  • MOSES_PATH folder containing Moses installation
  • N_MONO number of monolingual sentences for each language (default 10000000)
  • N_THREADS number of threads in data preprocessing (default 48)
  • SRC source language (default English)
  • TGT target language (default French)

The script should return something like this:

BLEU = 13.49, 51.9/21.1/10.2/5.2 (BP=0.869, ratio=0.877, hyp_len=71143, ref_len=81098)
End of training. Experiment is stored in: ./UnsupervisedMT/PBSMT/moses_train_en-fr

If you use 50M instead of 10M sentences in your language model, you should get BLEU = 15.66, 52.9/23.2/12.3/7.0. Using a bigger language model, as well as phrases instead of words, will improve the results even further.

References

Please cite [1] and [2] if you found the resources in this repository useful.

[1] G. Lample, M. Ott, A. Conneau, L. Denoyer, MA. Ranzato Phrase-Based & Neural Unsupervised Machine Translation

Phrase-Based & Neural Unsupervised Machine Translation

@inproceedings{lample2018phrase,
  title={Phrase-Based \& Neural Unsupervised Machine Translation},
  author={Lample, Guillaume and Ott, Myle and Conneau, Alexis and Denoyer, Ludovic and Ranzato, Marc'Aurelio},
  booktitle = {Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
  year={2018}
}

Unsupervised Machine Translation With Monolingual Data Only

[2] G. Lample, A. Conneau, L. Denoyer, MA. Ranzato Unsupervised Machine Translation With Monolingual Data Only

@inproceedings{lample2017unsupervised,
  title = {Unsupervised machine translation using monolingual corpora only},
  author = {Lample, Guillaume and Conneau, Alexis and Denoyer, Ludovic and Ranzato, Marc'Aurelio},
  booktitle = {International Conference on Learning Representations (ICLR)},
  year = {2018}
}

Word Translation Without Parallel Data

[3] A. Conneau*, G. Lample*, L. Denoyer, MA. Ranzato, H. JΓ©gou, Word Translation Without Parallel Data

* Equal contribution. Order has been determined with a coin flip.

@inproceedings{conneau2017word,
  title = {Word Translation Without Parallel Data},
  author = {Conneau, Alexis and Lample, Guillaume and Ranzato, Marc'Aurelio and Denoyer, Ludovic and J\'egou, Herv\'e},
  booktitle = {International Conference on Learning Representations (ICLR)},
  year = {2018}
}

License

See the LICENSE file for more details.

More Repositories

1

llama

Inference code for LLaMA models
Python
44,989
star
2

segment-anything

The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.
Jupyter Notebook
42,134
star
3

Detectron

FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.
Python
25,771
star
4

fairseq

Facebook AI Research Sequence-to-Sequence Toolkit written in Python.
Python
25,718
star
5

detectron2

Detectron2 is a platform for object detection, segmentation and other visual recognition tasks.
Python
25,567
star
6

fastText

Library for fast text representation and classification.
HTML
24,973
star
7

faiss

A library for efficient similarity search and clustering of dense vectors.
C++
24,035
star
8

audiocraft

Audiocraft is a library for audio processing and generation with deep learning. It features the state-of-the-art EnCodec audio compressor / tokenizer, along with MusicGen, a simple and controllable music generation LM with textual and melodic conditioning.
Python
18,693
star
9

codellama

Inference code for CodeLlama models
Python
13,303
star
10

detr

End-to-End Object Detection with Transformers
Python
11,076
star
11

ParlAI

A framework for training and evaluating AI models on a variety of openly available dialogue datasets.
Python
10,085
star
12

seamless_communication

Foundational Models for State-of-the-Art Speech and Text Translation
Jupyter Notebook
9,653
star
13

maskrcnn-benchmark

Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.
Python
9,104
star
14

pifuhd

High-Resolution 3D Human Digitization from A Single Image.
Python
8,923
star
15

hydra

Hydra is a framework for elegantly configuring complex applications
Python
8,044
star
16

AnimatedDrawings

Code to accompany "A Method for Animating Children's Drawings of the Human Figure"
Python
8,032
star
17

ImageBind

ImageBind One Embedding Space to Bind Them All
Python
7,630
star
18

nougat

Implementation of Nougat Neural Optical Understanding for Academic Documents
Python
7,568
star
19

llama-recipes

Scripts for fine-tuning Llama2 with composable FSDP & PEFT methods to cover single/multi-node GPUs. Supports default & custom datasets for applications such as summarization & question answering. Supporting a number of candid inference solutions such as HF TGI, VLLM for local or cloud deployment.Demo apps to showcase Llama2 for WhatsApp & Messenger
Jupyter Notebook
7,402
star
20

pytorch3d

PyTorch3D is FAIR's library of reusable components for deep learning with 3D data
Python
7,322
star
21

dinov2

PyTorch code and models for the DINOv2 self-supervised learning method.
Jupyter Notebook
7,278
star
22

DensePose

A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body
Jupyter Notebook
6,547
star
23

pytext

A natural language modeling framework based on PyTorch
Python
6,357
star
24

metaseq

Repo for external large-scale work
Python
5,947
star
25

demucs

Code for the paper Hybrid Spectrogram and Waveform Source Separation
Python
5,886
star
26

SlowFast

PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.
Python
5,678
star
27

mae

PyTorch implementation of MAE https//arxiv.org/abs/2111.06377
Python
5,495
star
28

mmf

A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)
Python
5,235
star
29

ConvNeXt

Code release for ConvNeXt model
Python
4,971
star
30

dino

PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO
Python
4,830
star
31

DiT

Official PyTorch Implementation of "Scalable Diffusion Models with Transformers"
Python
4,761
star
32

AugLy

A data augmentations library for audio, image, text, and video.
Python
4,739
star
33

Kats

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends.
Python
4,387
star
34

DrQA

Reading Wikipedia to Answer Open-Domain Questions
Python
4,374
star
35

xformers

Hackable and optimized Transformers building blocks, supporting a composable construction.
Python
4,191
star
36

moco

PyTorch implementation of MoCo: https://arxiv.org/abs/1911.05722
Python
4,035
star
37

StarSpace

Learning embeddings for classification, retrieval and ranking.
C++
3,856
star
38

fairseq-lua

Facebook AI Research Sequence-to-Sequence Toolkit
Lua
3,765
star
39

nevergrad

A Python toolbox for performing gradient-free optimization
Python
3,446
star
40

deit

Official DeiT repository
Python
3,425
star
41

dlrm

An implementation of a deep learning recommendation model (DLRM)
Python
3,417
star
42

ReAgent

A platform for Reasoning systems (Reinforcement Learning, Contextual Bandits, etc.)
Python
3,395
star
43

LASER

Language-Agnostic SEntence Representations
Python
3,308
star
44

VideoPose3D

Efficient 3D human pose estimation in video using 2D keypoint trajectories
Python
3,294
star
45

PyTorch-BigGraph

Generate embeddings from large-scale graph-structured data.
Python
3,238
star
46

deepmask

Torch implementation of DeepMask and SharpMask
Lua
3,113
star
47

MUSE

A library for Multilingual Unsupervised or Supervised word Embeddings
Python
3,094
star
48

vissl

VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.
Jupyter Notebook
3,038
star
49

pytorchvideo

A deep learning library for video understanding research.
Python
2,885
star
50

XLM

PyTorch original implementation of Cross-lingual Language Model Pretraining.
Python
2,763
star
51

hiplot

HiPlot makes understanding high dimensional data easy
TypeScript
2,481
star
52

ijepa

Official codebase for I-JEPA, the Image-based Joint-Embedding Predictive Architecture. First outlined in the CVPR paper, "Self-supervised learning from images with a joint-embedding predictive architecture."
Python
2,381
star
53

fairscale

PyTorch extensions for high performance and large scale training.
Python
2,319
star
54

audio2photoreal

Code and dataset for photorealistic Codec Avatars driven from audio
Python
2,316
star
55

encodec

State-of-the-art deep learning based audio codec supporting both mono 24 kHz audio and stereo 48 kHz audio.
Python
2,313
star
56

habitat-sim

A flexible, high-performance 3D simulator for Embodied AI research.
C++
2,299
star
57

InferSent

InferSent sentence embeddings
Jupyter Notebook
2,264
star
58

co-tracker

CoTracker is a model for tracking any point (pixel) on a video.
Jupyter Notebook
2,240
star
59

Pearl

A Production-ready Reinforcement Learning AI Agent Library brought by the Applied Reinforcement Learning team at Meta.
Python
2,193
star
60

pyrobot

PyRobot: An Open Source Robotics Research Platform
Python
2,109
star
61

darkforestGo

DarkForest, the Facebook Go engine.
C
2,108
star
62

ELF

An End-To-End, Lightweight and Flexible Platform for Game Research
C++
2,089
star
63

pycls

Codebase for Image Classification Research, written in PyTorch.
Python
2,053
star
64

esm

Evolutionary Scale Modeling (esm): Pretrained language models for proteins
Python
2,026
star
65

frankmocap

A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator
Python
1,972
star
66

video-nonlocal-net

Non-local Neural Networks for Video Classification
Python
1,931
star
67

SentEval

A python tool for evaluating the quality of sentence embeddings.
Python
1,930
star
68

ResNeXt

Implementation of a classification framework from the paper Aggregated Residual Transformations for Deep Neural Networks
Lua
1,863
star
69

SparseConvNet

Submanifold sparse convolutional networks
C++
1,847
star
70

swav

PyTorch implementation of SwAV https//arxiv.org/abs/2006.09882
Python
1,790
star
71

TensorComprehensions

A domain specific language to express machine learning workloads.
C++
1,747
star
72

Mask2Former

Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"
Python
1,638
star
73

habitat-lab

A modular high-level library to train embodied AI agents across a variety of tasks and environments.
Python
1,636
star
74

fvcore

Collection of common code that's shared among different research projects in FAIR computer vision team.
Python
1,623
star
75

TransCoder

Public release of the TransCoder research project https://arxiv.org/pdf/2006.03511.pdf
Python
1,611
star
76

poincare-embeddings

PyTorch implementation of the NIPS-17 paper "PoincarΓ© Embeddings for Learning Hierarchical Representations"
Python
1,587
star
77

votenet

Deep Hough Voting for 3D Object Detection in Point Clouds
Python
1,563
star
78

pytorch_GAN_zoo

A mix of GAN implementations including progressive growing
Python
1,554
star
79

ClassyVision

An end-to-end PyTorch framework for image and video classification
Python
1,552
star
80

deepcluster

Deep Clustering for Unsupervised Learning of Visual Features
Python
1,544
star
81

higher

higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.
Python
1,524
star
82

consistent_depth

We estimate dense, flicker-free, geometrically consistent depth from monocular video, for example hand-held cell phone video.
Python
1,479
star
83

Detic

Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".
Python
1,446
star
84

end-to-end-negotiator

Deal or No Deal? End-to-End Learning for Negotiation Dialogues
Python
1,368
star
85

multipathnet

A Torch implementation of the object detection network from "A MultiPath Network for Object Detection" (https://arxiv.org/abs/1604.02135)
Lua
1,349
star
86

CommAI-env

A platform for developing AI systems as described in A Roadmap towards Machine Intelligence - http://arxiv.org/abs/1511.08130
1,324
star
87

theseus

A library for differentiable nonlinear optimization
Python
1,306
star
88

ConvNeXt-V2

Code release for ConvNeXt V2 model
Python
1,300
star
89

DPR

Dense Passage Retriever - is a set of tools and models for open domain Q&A task.
Python
1,292
star
90

CrypTen

A framework for Privacy Preserving Machine Learning
Python
1,283
star
91

denoiser

Real Time Speech Enhancement in the Waveform Domain (Interspeech 2020)We provide a PyTorch implementation of the paper Real Time Speech Enhancement in the Waveform Domain. In which, we present a causal speech enhancement model working on the raw waveform that runs in real-time on a laptop CPU. The proposed model is based on an encoder-decoder architecture with skip-connections. It is optimized on both time and frequency domains, using multiple loss functions. Empirical evidence shows that it is capable of removing various kinds of background noise including stationary and non-stationary noises, as well as room reverb. Additionally, we suggest a set of data augmentation techniques applied directly on the raw waveform which further improve model performance and its generalization abilities.
Python
1,272
star
92

DeepSDF

Learning Continuous Signed Distance Functions for Shape Representation
Python
1,191
star
93

TimeSformer

The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"
Python
1,172
star
94

House3D

a Realistic and Rich 3D Environment
C++
1,167
star
95

MaskFormer

Per-Pixel Classification is Not All You Need for Semantic Segmentation (NeurIPS 2021, spotlight)
Python
1,149
star
96

LAMA

LAnguage Model Analysis
Python
1,104
star
97

fastMRI

A large-scale dataset of both raw MRI measurements and clinical MRI images.
Python
1,098
star
98

meshrcnn

code for Mesh R-CNN, ICCV 2019
Python
1,083
star
99

mixup-cifar10

mixup: Beyond Empirical Risk Minimization
Python
1,073
star
100

DomainBed

DomainBed is a suite to test domain generalization algorithms
Python
1,071
star