• Stars
    star
    1,544
  • Rank 29,092 (Top 0.6 %)
  • Language
    Python
  • License
    Other
  • Created over 5 years ago
  • Updated 11 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Deep Clustering for Unsupervised Learning of Visual Features

Deep Clustering for Unsupervised Learning of Visual Features

News

We release paper and code for SwAV, our new self-supervised method. SwAV pushes self-supervised learning to only 1.2% away from supervised learning on ImageNet with a ResNet-50! It combines online clustering with a multi-crop data augmentation.

We also present DeepCluster-v2, which is an improved version of DeepCluster (ResNet-50, better data augmentation, cosine learning rate schedule, MLP projection head, use of centroids, ...). Check out DeepCluster-v2 code.

DeepCluster

This code implements the unsupervised training of convolutional neural networks, or convnets, as described in the paper Deep Clustering for Unsupervised Learning of Visual Features.

Moreover, we provide the evaluation protocol codes we used in the paper:

  • Pascal VOC classification
  • Linear classification on activations
  • Instance-level image retrieval

Finally, this code also includes a visualisation module that allows to assess visually the quality of the learned features.

Requirements

  • a Python installation version 2.7
  • the SciPy and scikit-learn packages
  • a PyTorch install version 0.1.8 (pytorch.org)
  • CUDA 8.0
  • a Faiss install (Faiss)
  • The ImageNet dataset (which can be automatically downloaded by recent version of torchvision)

Pre-trained models

We provide pre-trained models with AlexNet and VGG-16 architectures, available for download.

  • The models in Caffe format expect BGR inputs that range in [0, 255]. You do not need to subtract the per-color-channel mean image since the preprocessing of the data is already included in our released models.
  • The models in PyTorch format expect RGB inputs that range in [0, 1]. You should preprocessed your data before passing them to the released models by normalizing them: mean_rgb = [0.485, 0.456, 0.406]; std_rgb = [0.229, 0.224, 0.225] Note that in all our released models, sobel filters are computed within the models as two convolutional layers (greyscale + sobel filters).

You can download all variants by running

$ ./download_model.sh

This will fetch the models into ${HOME}/deepcluster_models by default. You can change that path in the environment variable. Direct download links are provided here:

We also provide the last epoch cluster assignments for these models. After downloading, open the file with Python 2:

import pickle
with open("./alexnet_cluster_assignment.pickle", "rb") as f:
    b = pickle.load(f)

If you're a Python 3 user, specify encoding='latin1' in the load fonction. Each file is a list of (image path, cluster_index) tuples.

Finally, we release the features extracted with DeepCluster model for ImageNet dataset. These features are in dimension 4096 and correspond to a forward on the model up to the penultimate convolutional layer (just before last ReLU). In you plan to cluster the features, don't forget to normalize and reduce/whiten them.

Running the unsupervised training

Unsupervised training can be launched by running:

$ ./main.sh

Please provide the path to the data folder:

DIR=/datasets01/imagenet_full_size/061417/train

To train an AlexNet network, specify ARCH=alexnet whereas to train a VGG-16 convnet use ARCH=vgg16.

You can also specify where you want to save the clustering logs and checkpoints using:

EXP=exp

During training, models are saved every other n iterations (set using the --checkpoints flag), and can be found in for instance in ${EXP}/checkpoints/checkpoint_0.pth.tar. A log of the assignments in the clusters at each epoch can be found in the pickle file ${EXP}/clusters.

Full documentation of the unsupervised training code main.py:

usage: main.py [-h] [--arch ARCH] [--sobel] [--clustering {Kmeans,PIC}]
               [--nmb_cluster NMB_CLUSTER] [--lr LR] [--wd WD]
               [--reassign REASSIGN] [--workers WORKERS] [--epochs EPOCHS]
               [--start_epoch START_EPOCH] [--batch BATCH]
               [--momentum MOMENTUM] [--resume PATH]
               [--checkpoints CHECKPOINTS] [--seed SEED] [--exp EXP]
               [--verbose]
               DIR

PyTorch Implementation of DeepCluster

positional arguments:
  DIR                   path to dataset

optional arguments:
  -h, --help            show this help message and exit
  --arch ARCH, -a ARCH  CNN architecture (default: alexnet)
  --sobel               Sobel filtering
  --clustering {Kmeans,PIC}
                        clustering algorithm (default: Kmeans)
  --nmb_cluster NMB_CLUSTER, --k NMB_CLUSTER
                        number of cluster for k-means (default: 10000)
  --lr LR               learning rate (default: 0.05)
  --wd WD               weight decay pow (default: -5)
  --reassign REASSIGN   how many epochs of training between two consecutive
                        reassignments of clusters (default: 1)
  --workers WORKERS     number of data loading workers (default: 4)
  --epochs EPOCHS       number of total epochs to run (default: 200)
  --start_epoch START_EPOCH
                        manual epoch number (useful on restarts) (default: 0)
  --batch BATCH         mini-batch size (default: 256)
  --momentum MOMENTUM   momentum (default: 0.9)
  --resume PATH         path to checkpoint (default: None)
  --checkpoints CHECKPOINTS
                        how many iterations between two checkpoints (default:
                        25000)
  --seed SEED           random seed (default: 31)
  --exp EXP             path to exp folder
  --verbose             chatty

Evaluation protocols

Pascal VOC

To run the classification task with fine-tuning launch:

./eval_voc_classif_all.sh

and with no finetuning:

./eval_voc_classif_fc6_8.sh

Both these scripts download this code. You need to download the VOC 2007 dataset. Then, specify in both ./eval_voc_classif_all.sh and ./eval_voc_classif_fc6_8.sh scripts the path CAFFE to point to the caffe branch, and VOC to point to the Pascal VOC directory. Indicate in PROTO and MODEL respectively the path to the prototxt file of the model and the path to the model weights of the model to evaluate. The flag --train-from allows to indicate the separation between the frozen and to-train layers.

We implemented voc classification with PyTorch.

Erratum: When training the MLP only (fc6-8), the parameters of scaling of the batch-norm layers in the whole network are trained. With freezing these parameters we get 70.4 mAP.

Linear classification on activations

You can run these transfer tasks using:

$ ./eval_linear.sh

You need to specify the path to the supervised data (ImageNet or Places):

DATA=/datasets01/imagenet_full_size/061417/

the path of your model:

MODEL=/private/home/mathilde/deepcluster/checkpoint.pth.tar

and on top of which convolutional layer to train the classifier:

CONV=3

You can specify where you want to save the output of this experiment (checkpoints and best models) with

EXP=exp

Full documentation for this task:

usage: eval_linear.py [-h] [--data DATA] [--model MODEL] [--conv {1,2,3,4,5}]
                      [--tencrops] [--exp EXP] [--workers WORKERS]
                      [--epochs EPOCHS] [--batch_size BATCH_SIZE] [--lr LR]
                      [--momentum MOMENTUM] [--weight_decay WEIGHT_DECAY]
                      [--seed SEED] [--verbose]

Train linear classifier on top of frozen convolutional layers of an AlexNet.

optional arguments:
  -h, --help            show this help message and exit
  --data DATA           path to dataset
  --model MODEL         path to model
  --conv {1,2,3,4,5}    on top of which convolutional layer train logistic
                        regression
  --tencrops            validation accuracy averaged over 10 crops
  --exp EXP             exp folder
  --workers WORKERS     number of data loading workers (default: 4)
  --epochs EPOCHS       number of total epochs to run (default: 90)
  --batch_size BATCH_SIZE
                        mini-batch size (default: 256)
  --lr LR               learning rate
  --momentum MOMENTUM   momentum (default: 0.9)
  --weight_decay WEIGHT_DECAY, --wd WEIGHT_DECAY
                        weight decay pow (default: -4)
  --seed SEED           random seed
  --verbose             chatty

Instance-level image retrieval

You can run the instance-level image retrieval transfer task using:

./eval_retrieval.sh

Visualisation

We provide two standard visualisation methods presented in our paper.

Filter visualisation with gradient ascent

First, it is posible to learn an input image that maximizes the activation of a given filter. We follow the process described by Yosinki et al. with a cross entropy function between the target filter and the other filters in the same layer. From the visu folder you can run

./gradient_ascent.sh

You will need to specify the model path MODEL, the architecture of your model ARCH, the path of the folder in which you want to save the synthetic images EXP and the convolutional layer to consider CONV.

Full documentation:

usage: gradient_ascent.py [-h] [--model MODEL] [--arch {alexnet,vgg16}]
                          [--conv CONV] [--exp EXP] [--lr LR] [--wd WD]
                          [--sig SIG] [--step STEP] [--niter NITER]
                          [--idim IDIM]

Gradient ascent visualisation

optional arguments:
  -h, --help            show this help message and exit
  --model MODEL         Model
  --arch {alexnet,vgg16}
                        arch
  --conv CONV           convolutional layer
  --exp EXP             path to res
  --lr LR               learning rate (default: 3)
  --wd WD               weight decay (default: 10^-5)
  --sig SIG             gaussian blur (default: 0.3)
  --step STEP           number of iter between gaussian blurs (default: 5)
  --niter NITER         total number of iterations (default: 1000)
  --idim IDIM           size of input image (default: 224)

I recommand you play with the hyper-parameters to find a regime where the visualisations are good. For example with the pre-trained deepcluster AlexNet, for conv1 using a learning rate of 3 and 30.000 iterations works well. For conv5, using a learning rate of 30 and 3.000 iterations gives nice images with the other parameters set to their default values.

Top 9 maximally activated images in a dataset

Finally, we provide code to retrieve images in a dataset that maximally activate a given filter in the convnet. From the visu folder, after having changed the fields MODEL, EXP, CONV and DATA, run

./activ-retrieval.sh

DeeperCluster

We have proposed another unsupervised feature learning paper at ICCV 2019. We have shown that unsupervised learning can be used to pre-train convnets, leading to a boost in performance on ImageNet classification. We achieve that by scaling DeepCluster to 96M images and mixing it with RotNet self-supervision. Check out the paper and code.

License

You may find out more about the license here.

Reference

If you use this code, please cite the following paper:

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. "Deep Clustering for Unsupervised Learning of Visual Features." Proc. ECCV (2018).

@InProceedings{caron2018deep,
  title={Deep Clustering for Unsupervised Learning of Visual Features},
  author={Caron, Mathilde and Bojanowski, Piotr and Joulin, Armand and Douze, Matthijs},
  booktitle={European Conference on Computer Vision},
  year={2018},
}

More Repositories

1

llama

Inference code for LLaMA models
Python
44,989
star
2

segment-anything

The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.
Jupyter Notebook
42,134
star
3

Detectron

FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.
Python
25,771
star
4

fairseq

Facebook AI Research Sequence-to-Sequence Toolkit written in Python.
Python
25,718
star
5

detectron2

Detectron2 is a platform for object detection, segmentation and other visual recognition tasks.
Python
25,567
star
6

fastText

Library for fast text representation and classification.
HTML
24,973
star
7

faiss

A library for efficient similarity search and clustering of dense vectors.
C++
24,035
star
8

audiocraft

Audiocraft is a library for audio processing and generation with deep learning. It features the state-of-the-art EnCodec audio compressor / tokenizer, along with MusicGen, a simple and controllable music generation LM with textual and melodic conditioning.
Python
18,693
star
9

codellama

Inference code for CodeLlama models
Python
13,303
star
10

detr

End-to-End Object Detection with Transformers
Python
11,076
star
11

ParlAI

A framework for training and evaluating AI models on a variety of openly available dialogue datasets.
Python
10,085
star
12

seamless_communication

Foundational Models for State-of-the-Art Speech and Text Translation
Jupyter Notebook
9,653
star
13

maskrcnn-benchmark

Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.
Python
9,104
star
14

pifuhd

High-Resolution 3D Human Digitization from A Single Image.
Python
8,923
star
15

hydra

Hydra is a framework for elegantly configuring complex applications
Python
8,044
star
16

AnimatedDrawings

Code to accompany "A Method for Animating Children's Drawings of the Human Figure"
Python
8,032
star
17

ImageBind

ImageBind One Embedding Space to Bind Them All
Python
7,630
star
18

nougat

Implementation of Nougat Neural Optical Understanding for Academic Documents
Python
7,568
star
19

llama-recipes

Scripts for fine-tuning Llama2 with composable FSDP & PEFT methods to cover single/multi-node GPUs. Supports default & custom datasets for applications such as summarization & question answering. Supporting a number of candid inference solutions such as HF TGI, VLLM for local or cloud deployment.Demo apps to showcase Llama2 for WhatsApp & Messenger
Jupyter Notebook
7,402
star
20

pytorch3d

PyTorch3D is FAIR's library of reusable components for deep learning with 3D data
Python
7,322
star
21

dinov2

PyTorch code and models for the DINOv2 self-supervised learning method.
Jupyter Notebook
7,278
star
22

DensePose

A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body
Jupyter Notebook
6,547
star
23

pytext

A natural language modeling framework based on PyTorch
Python
6,357
star
24

metaseq

Repo for external large-scale work
Python
5,947
star
25

demucs

Code for the paper Hybrid Spectrogram and Waveform Source Separation
Python
5,886
star
26

SlowFast

PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.
Python
5,678
star
27

mae

PyTorch implementation of MAE https//arxiv.org/abs/2111.06377
Python
5,495
star
28

mmf

A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)
Python
5,235
star
29

ConvNeXt

Code release for ConvNeXt model
Python
4,971
star
30

dino

PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO
Python
4,830
star
31

DiT

Official PyTorch Implementation of "Scalable Diffusion Models with Transformers"
Python
4,761
star
32

AugLy

A data augmentations library for audio, image, text, and video.
Python
4,739
star
33

Kats

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends.
Python
4,387
star
34

DrQA

Reading Wikipedia to Answer Open-Domain Questions
Python
4,374
star
35

xformers

Hackable and optimized Transformers building blocks, supporting a composable construction.
Python
4,191
star
36

moco

PyTorch implementation of MoCo: https://arxiv.org/abs/1911.05722
Python
4,035
star
37

StarSpace

Learning embeddings for classification, retrieval and ranking.
C++
3,856
star
38

fairseq-lua

Facebook AI Research Sequence-to-Sequence Toolkit
Lua
3,765
star
39

nevergrad

A Python toolbox for performing gradient-free optimization
Python
3,446
star
40

deit

Official DeiT repository
Python
3,425
star
41

dlrm

An implementation of a deep learning recommendation model (DLRM)
Python
3,417
star
42

ReAgent

A platform for Reasoning systems (Reinforcement Learning, Contextual Bandits, etc.)
Python
3,395
star
43

LASER

Language-Agnostic SEntence Representations
Python
3,308
star
44

VideoPose3D

Efficient 3D human pose estimation in video using 2D keypoint trajectories
Python
3,294
star
45

PyTorch-BigGraph

Generate embeddings from large-scale graph-structured data.
Python
3,238
star
46

deepmask

Torch implementation of DeepMask and SharpMask
Lua
3,113
star
47

MUSE

A library for Multilingual Unsupervised or Supervised word Embeddings
Python
3,094
star
48

vissl

VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.
Jupyter Notebook
3,038
star
49

pytorchvideo

A deep learning library for video understanding research.
Python
2,885
star
50

XLM

PyTorch original implementation of Cross-lingual Language Model Pretraining.
Python
2,763
star
51

hiplot

HiPlot makes understanding high dimensional data easy
TypeScript
2,481
star
52

ijepa

Official codebase for I-JEPA, the Image-based Joint-Embedding Predictive Architecture. First outlined in the CVPR paper, "Self-supervised learning from images with a joint-embedding predictive architecture."
Python
2,381
star
53

fairscale

PyTorch extensions for high performance and large scale training.
Python
2,319
star
54

audio2photoreal

Code and dataset for photorealistic Codec Avatars driven from audio
Python
2,316
star
55

encodec

State-of-the-art deep learning based audio codec supporting both mono 24 kHz audio and stereo 48 kHz audio.
Python
2,313
star
56

habitat-sim

A flexible, high-performance 3D simulator for Embodied AI research.
C++
2,299
star
57

InferSent

InferSent sentence embeddings
Jupyter Notebook
2,264
star
58

co-tracker

CoTracker is a model for tracking any point (pixel) on a video.
Jupyter Notebook
2,240
star
59

Pearl

A Production-ready Reinforcement Learning AI Agent Library brought by the Applied Reinforcement Learning team at Meta.
Python
2,193
star
60

pyrobot

PyRobot: An Open Source Robotics Research Platform
Python
2,109
star
61

darkforestGo

DarkForest, the Facebook Go engine.
C
2,108
star
62

ELF

An End-To-End, Lightweight and Flexible Platform for Game Research
C++
2,089
star
63

pycls

Codebase for Image Classification Research, written in PyTorch.
Python
2,053
star
64

esm

Evolutionary Scale Modeling (esm): Pretrained language models for proteins
Python
2,026
star
65

frankmocap

A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator
Python
1,972
star
66

video-nonlocal-net

Non-local Neural Networks for Video Classification
Python
1,931
star
67

SentEval

A python tool for evaluating the quality of sentence embeddings.
Python
1,930
star
68

ResNeXt

Implementation of a classification framework from the paper Aggregated Residual Transformations for Deep Neural Networks
Lua
1,863
star
69

SparseConvNet

Submanifold sparse convolutional networks
C++
1,847
star
70

swav

PyTorch implementation of SwAV https//arxiv.org/abs/2006.09882
Python
1,790
star
71

TensorComprehensions

A domain specific language to express machine learning workloads.
C++
1,747
star
72

Mask2Former

Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"
Python
1,638
star
73

habitat-lab

A modular high-level library to train embodied AI agents across a variety of tasks and environments.
Python
1,636
star
74

fvcore

Collection of common code that's shared among different research projects in FAIR computer vision team.
Python
1,623
star
75

TransCoder

Public release of the TransCoder research project https://arxiv.org/pdf/2006.03511.pdf
Python
1,611
star
76

poincare-embeddings

PyTorch implementation of the NIPS-17 paper "Poincarรฉ Embeddings for Learning Hierarchical Representations"
Python
1,587
star
77

votenet

Deep Hough Voting for 3D Object Detection in Point Clouds
Python
1,563
star
78

pytorch_GAN_zoo

A mix of GAN implementations including progressive growing
Python
1,554
star
79

ClassyVision

An end-to-end PyTorch framework for image and video classification
Python
1,552
star
80

higher

higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.
Python
1,524
star
81

UnsupervisedMT

Phrase-Based & Neural Unsupervised Machine Translation
Python
1,496
star
82

consistent_depth

We estimate dense, flicker-free, geometrically consistent depth from monocular video, for example hand-held cell phone video.
Python
1,479
star
83

Detic

Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".
Python
1,446
star
84

end-to-end-negotiator

Deal or No Deal? End-to-End Learning for Negotiation Dialogues
Python
1,368
star
85

multipathnet

A Torch implementation of the object detection network from "A MultiPath Network for Object Detection" (https://arxiv.org/abs/1604.02135)
Lua
1,349
star
86

CommAI-env

A platform for developing AI systems as described in A Roadmap towards Machine Intelligence - http://arxiv.org/abs/1511.08130
1,324
star
87

theseus

A library for differentiable nonlinear optimization
Python
1,306
star
88

ConvNeXt-V2

Code release for ConvNeXt V2 model
Python
1,300
star
89

DPR

Dense Passage Retriever - is a set of tools and models for open domain Q&A task.
Python
1,292
star
90

CrypTen

A framework for Privacy Preserving Machine Learning
Python
1,283
star
91

denoiser

Real Time Speech Enhancement in the Waveform Domain (Interspeech 2020)We provide a PyTorch implementation of the paper Real Time Speech Enhancement in the Waveform Domain. In which, we present a causal speech enhancement model working on the raw waveform that runs in real-time on a laptop CPU. The proposed model is based on an encoder-decoder architecture with skip-connections. It is optimized on both time and frequency domains, using multiple loss functions. Empirical evidence shows that it is capable of removing various kinds of background noise including stationary and non-stationary noises, as well as room reverb. Additionally, we suggest a set of data augmentation techniques applied directly on the raw waveform which further improve model performance and its generalization abilities.
Python
1,272
star
92

DeepSDF

Learning Continuous Signed Distance Functions for Shape Representation
Python
1,191
star
93

TimeSformer

The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"
Python
1,172
star
94

House3D

a Realistic and Rich 3D Environment
C++
1,167
star
95

MaskFormer

Per-Pixel Classification is Not All You Need for Semantic Segmentation (NeurIPS 2021, spotlight)
Python
1,149
star
96

LAMA

LAnguage Model Analysis
Python
1,104
star
97

fastMRI

A large-scale dataset of both raw MRI measurements and clinical MRI images.
Python
1,098
star
98

meshrcnn

code for Mesh R-CNN, ICCV 2019
Python
1,083
star
99

mixup-cifar10

mixup: Beyond Empirical Risk Minimization
Python
1,073
star
100

DomainBed

DomainBed is a suite to test domain generalization algorithms
Python
1,071
star