• Stars
    star
    1,098
  • Rank 40,557 (Top 0.9 %)
  • Language
    Python
  • License
    MIT License
  • Created over 5 years ago
  • Updated 11 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A large-scale dataset of both raw MRI measurements and clinical MRI images.

fastMRI

LICENSE Build and Test

Website | Dataset | GitHub | Publications

Accelerating Magnetic Resonance Imaging (MRI) by acquiring fewer measurements has the potential to reduce medical costs, minimize stress to patients and make MR imaging possible in applications where it is currently prohibitively slow or expensive.

fastMRI is a collaborative research project from Facebook AI Research (FAIR) and NYU Langone Health to investigate the use of AI to make MRI scans faster. NYU Langone Health has released fully anonymized knee and brain MRI datasets that can be downloaded from the fastMRI dataset page. Publications associated with the fastMRI project can be found at the end of this README.

This repository contains convenient PyTorch data loaders, subsampling functions, evaluation metrics, and reference implementations of simple baseline methods. It also contains implementations for methods in some of the publications of the fastMRI project.

Documentation

The fastMRI Dataset

There are multiple publications describing different subcomponents of the data (e.g., brain vs. knee) and associated baselines. All of the fastMRI data can be downloaded from the fastMRI dataset page.

Code Repository

For code documentation, most functions and classes have accompanying docstrings that you can access via the help function in IPython. For example:

from fastmri.data import SliceDataset

help(SliceDataset)

Dependencies and Installation

Note: Contributions to the code are continuously tested via GitHub actions. If you encounter an issue, the best first thing to do is to try to match the tests environment in setup.cfg, e.g., pip install --editable ".[tests]" when installing from source.

Note: As documented in Issue 215, there is currently a memory leak when using h5py installed from pip and converting to a torch.Tensor. To avoid the leak, you need to use h5py with a version of HDF5 before 1.12.1. As of February 16, 2022, the conda version of h5py 3.6.0 used HDF5 1.10.6, which avoids the leak.

First install PyTorch according to the directions at the PyTorch Website for your operating system and CUDA setup. Then, run

pip install fastmri

pip will handle all package dependencies. After this you should be able to run most of the code in the repository.

Installing Directly from Source

If you want to install directly from the GitHub source, clone the repository, navigate to the fastmri root directory and run

pip install -e .

Package Structure & Usage

The repository is centered around the fastmri module. The following breaks down the basic structure:

fastmri: Contains a number of basic tools for complex number math, coil combinations, etc.

  • fastmri.data: Contains data utility functions from original data folder that can be used to create sampling masks and submission files.
  • fastmri.models: Contains reconstruction models, such as the U-Net and VarNet.
  • fastmri.pl_modules: PyTorch Lightning modules for data loading, training, and logging.

Examples and Reproducibility

The fastmri_examples and banding_removal folders include code for reproducibility. The baseline models were used in the arXiv paper.

A brief summary of implementions based on papers with links to code follows. For completeness we also mention work on active acquisition, which is hosted in another repository.

Testing

Run pytest tests. By default integration tests that use the fastMRI data are skipped. If you would like to run these tests, set SKIP_INTEGRATIONS to False in the conftest.

Training a model

The data README has a bare-bones example for how to load data and incorporate data transforms. This jupyter notebook contains a simple tutorial explaining how to get started working with the data.

Please look at this U-Net demo script for an example of how to train a model using the PyTorch Lightning framework.

Submitting to the Leaderboard

NOTICE: As documented in Discussion 293, the fastmri.org domain was transferred from Meta ownership to NYU ownership on 2023-04-17, and NYU has not yet rebuilt the site. Until the site and leaderbaords are rebuilt by NYU, leaderboards will be unavailable. Mitigations are presented in Discussion 293.

License

fastMRI is MIT licensed, as found in the LICENSE file.

Cite

If you use the fastMRI data or code in your project, please cite the arXiv paper:

@misc{zbontar2018fastMRI,
    title={{fastMRI}: An Open Dataset and Benchmarks for Accelerated {MRI}},
    author={Jure Zbontar and Florian Knoll and Anuroop Sriram and Tullie Murrell and Zhengnan Huang and Matthew J. Muckley and Aaron Defazio and Ruben Stern and Patricia Johnson and Mary Bruno and Marc Parente and Krzysztof J. Geras and Joe Katsnelson and Hersh Chandarana and Zizhao Zhang and Michal Drozdzal and Adriana Romero and Michael Rabbat and Pascal Vincent and Nafissa Yakubova and James Pinkerton and Duo Wang and Erich Owens and C. Lawrence Zitnick and Michael P. Recht and Daniel K. Sodickson and Yvonne W. Lui},
    journal = {ArXiv e-prints},
    archivePrefix = "arXiv",
    eprint = {1811.08839},
    year={2018}
}

If you use the fastMRI prostate data or code in your project, please cite that paper:

@misc{tibrewala2023fastmri,
  title={{FastMRI Prostate}: A Publicly Available, Biparametric {MRI} Dataset to Advance Machine Learning for Prostate Cancer Imaging},
  author={Tibrewala, Radhika and Dutt, Tarun and Tong, Angela and Ginocchio, Luke and Keerthivasan, Mahesh B and Baete, Steven H and Chopra, Sumit and Lui, Yvonne W and Sodickson, Daniel K and Chandarana, Hersh and Johnson, Patricia M},
  journal = {ArXiv e-prints},
  archivePrefix = "arXiv",
  eprint={2304.09254},
  year={2023}
}

List of Papers

The following lists titles of papers from the fastMRI project. The corresponding abstracts, as well as links to preprints and code can be found here.

  1. Zbontar, J.*, Knoll, F.*, Sriram, A.*, Murrell, T., Huang, Z., Muckley, M. J., ... & Lui, Y. W. (2018). fastMRI: An Open Dataset and Benchmarks for Accelerated MRI. arXiv preprint arXiv:1811.08839.
  2. Zhang, Z., Romero, A., Muckley, M. J., Vincent, P., Yang, L., & Drozdzal, M. (2019). Reducing uncertainty in undersampled MRI reconstruction with active acquisition. In CVPR, pages 2049-2058.
  3. Defazio, A. (2019). Offset Sampling Improves Deep Learning based Accelerated MRI Reconstructions by Exploiting Symmetry. arXiv preprint, arXiv:1912.01101.
  4. Knoll, F.*, Zbontar, J.*, Sriram, A., Muckley, M. J., Bruno, M., Defazio, A., ... & Lui, Y. W. (2020). fastMRI: A Publicly Available Raw k-Space and DICOM Dataset of Knee Images for Accelerated MR Image Reconstruction Using Machine Learning. Radiology: Artificial Intelligence, 2(1), page e190007.
  5. Knoll, F.*, Murrell, T.*, Sriram, A.*, Yakubova, N., Zbontar, J., Rabbat, M., ... & Recht, M. P. (2020). Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge. Magnetic Resonance in Medicine, 84(6), pages 3054-3070.
  6. Sriram, A., Zbontar, J., Murrell, T., Zitnick, C. L., Defazio, A., & Sodickson, D. K. (2020). GrappaNet: Combining parallel imaging with deep learning for multi-coil MRI reconstruction. In CVPR, pages 14315-14322.
  7. Recht, M. P., Zbontar, J., Sodickson, D. K., Knoll, F., Yakubova, N., Sriram, A., ... & Zitnick, C. L. (2020). Using Deep Learning to Accelerate Knee MRI at 3T: Results of an Interchangeability Study. American Journal of Roentgenology, 215(6), pages 1421-1429.
  8. Pineda, L., Basu, S., Romero, A., Calandra, R., & Drozdzal, M. (2020). Active MR k-space Sampling with Reinforcement Learning. In MICCAI, pages 23-33.
  9. Sriram, A.*, Zbontar, J.*, Murrell, T., Defazio, A., Zitnick, C. L., Yakubova, N., ... & Johnson, P. (2020). End-to-End Variational Networks for Accelerated MRI Reconstruction. In MICCAI, pages 64-73.
  10. Defazio, A., Murrell, T., & Recht, M. P. (2020). MRI Banding Removal via Adversarial Training. In Advances in Neural Information Processing Systems, 33, pages 7660-7670.
  11. Muckley, M. J.*, Riemenschneider, B.*, Radmanesh, A., Kim, S., Jeong, G., Ko, J., ... & Knoll, F. (2021). Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE Transactions on Medical Imaging, 40(9), pages 2306-2317.
  12. Johnson, P. M., Jeong, G., Hammernik, K., Schlemper, J., Qin, C., Duan, J., ..., & Knoll, F. (2021). Evaluation of the Robustness of Learned MR Image Reconstruction to Systematic Deviations Between Training and Test Data for the Models from the fastMRI Challenge. In MICCAI MLMIR Workshop, pages 25–34,
  13. Bakker, T., Muckley, M.J., Romero-Soriano, A., Drozdzal, M. & Pineda, L. (2022). On learning adaptive acquisition policies for undersampled multi-coil MRI reconstruction. In MIDL, pages 63-85.
  14. Radmanesh, A.*, Muckley, M. J.*, Murrell, T., Lindsey, E., Sriram, A., Knoll, F., ... & Lui, Y. W. (2022). Exploring the Acceleration Limits of Deep Learning VarNet-based Two-dimensional Brain MRI. Radiology: Artificial Intelligence, 4(6), page e210313.
  15. Johnson, P.M., Lin, D.J., Zbontar, J., Zitnick, C.L., Sriram, A., Muckley, M., Babb, J.S., Kline, M., Ciavarra, G., Alaia, E., ..., & Knoll, F. (2023). Deep Learning Reconstruction Enables Prospectively Accelerated Clinical Knee MRI. Radiology, 307(2), page e220425.
  16. Tibrewala, R., Dutt, T., Tong, A., Ginocchio, L., Keerthivasan, M.B., Baete, S.H., Lui, Y.W., Sodickson, D.K., Chandarana, H., Johnson, P.M. (2023). FastMRI Prostate: A Publicly Available, Biparametric MRI Dataset to Advance Machine Learning for Prostate Cancer Imaging. arXiv preprint, arXiv:2034.09254.

More Repositories

1

llama

Inference code for LLaMA models
Python
44,989
star
2

segment-anything

The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.
Jupyter Notebook
42,134
star
3

Detectron

FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.
Python
25,771
star
4

fairseq

Facebook AI Research Sequence-to-Sequence Toolkit written in Python.
Python
25,718
star
5

detectron2

Detectron2 is a platform for object detection, segmentation and other visual recognition tasks.
Python
25,567
star
6

fastText

Library for fast text representation and classification.
HTML
24,973
star
7

faiss

A library for efficient similarity search and clustering of dense vectors.
C++
24,035
star
8

audiocraft

Audiocraft is a library for audio processing and generation with deep learning. It features the state-of-the-art EnCodec audio compressor / tokenizer, along with MusicGen, a simple and controllable music generation LM with textual and melodic conditioning.
Python
18,693
star
9

codellama

Inference code for CodeLlama models
Python
13,303
star
10

detr

End-to-End Object Detection with Transformers
Python
11,076
star
11

ParlAI

A framework for training and evaluating AI models on a variety of openly available dialogue datasets.
Python
10,085
star
12

seamless_communication

Foundational Models for State-of-the-Art Speech and Text Translation
Jupyter Notebook
9,653
star
13

maskrcnn-benchmark

Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.
Python
9,104
star
14

pifuhd

High-Resolution 3D Human Digitization from A Single Image.
Python
8,923
star
15

hydra

Hydra is a framework for elegantly configuring complex applications
Python
8,044
star
16

AnimatedDrawings

Code to accompany "A Method for Animating Children's Drawings of the Human Figure"
Python
8,032
star
17

ImageBind

ImageBind One Embedding Space to Bind Them All
Python
7,630
star
18

nougat

Implementation of Nougat Neural Optical Understanding for Academic Documents
Python
7,568
star
19

llama-recipes

Scripts for fine-tuning Llama2 with composable FSDP & PEFT methods to cover single/multi-node GPUs. Supports default & custom datasets for applications such as summarization & question answering. Supporting a number of candid inference solutions such as HF TGI, VLLM for local or cloud deployment.Demo apps to showcase Llama2 for WhatsApp & Messenger
Jupyter Notebook
7,402
star
20

pytorch3d

PyTorch3D is FAIR's library of reusable components for deep learning with 3D data
Python
7,322
star
21

dinov2

PyTorch code and models for the DINOv2 self-supervised learning method.
Jupyter Notebook
7,278
star
22

DensePose

A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body
Jupyter Notebook
6,547
star
23

pytext

A natural language modeling framework based on PyTorch
Python
6,357
star
24

metaseq

Repo for external large-scale work
Python
5,947
star
25

demucs

Code for the paper Hybrid Spectrogram and Waveform Source Separation
Python
5,886
star
26

SlowFast

PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.
Python
5,678
star
27

mae

PyTorch implementation of MAE https//arxiv.org/abs/2111.06377
Python
5,495
star
28

mmf

A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)
Python
5,235
star
29

ConvNeXt

Code release for ConvNeXt model
Python
4,971
star
30

dino

PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO
Python
4,830
star
31

DiT

Official PyTorch Implementation of "Scalable Diffusion Models with Transformers"
Python
4,761
star
32

AugLy

A data augmentations library for audio, image, text, and video.
Python
4,739
star
33

Kats

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends.
Python
4,387
star
34

DrQA

Reading Wikipedia to Answer Open-Domain Questions
Python
4,374
star
35

xformers

Hackable and optimized Transformers building blocks, supporting a composable construction.
Python
4,191
star
36

moco

PyTorch implementation of MoCo: https://arxiv.org/abs/1911.05722
Python
4,035
star
37

StarSpace

Learning embeddings for classification, retrieval and ranking.
C++
3,856
star
38

fairseq-lua

Facebook AI Research Sequence-to-Sequence Toolkit
Lua
3,765
star
39

nevergrad

A Python toolbox for performing gradient-free optimization
Python
3,446
star
40

deit

Official DeiT repository
Python
3,425
star
41

dlrm

An implementation of a deep learning recommendation model (DLRM)
Python
3,417
star
42

ReAgent

A platform for Reasoning systems (Reinforcement Learning, Contextual Bandits, etc.)
Python
3,395
star
43

LASER

Language-Agnostic SEntence Representations
Python
3,308
star
44

VideoPose3D

Efficient 3D human pose estimation in video using 2D keypoint trajectories
Python
3,294
star
45

PyTorch-BigGraph

Generate embeddings from large-scale graph-structured data.
Python
3,238
star
46

deepmask

Torch implementation of DeepMask and SharpMask
Lua
3,113
star
47

MUSE

A library for Multilingual Unsupervised or Supervised word Embeddings
Python
3,094
star
48

vissl

VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.
Jupyter Notebook
3,038
star
49

pytorchvideo

A deep learning library for video understanding research.
Python
2,885
star
50

XLM

PyTorch original implementation of Cross-lingual Language Model Pretraining.
Python
2,763
star
51

hiplot

HiPlot makes understanding high dimensional data easy
TypeScript
2,481
star
52

ijepa

Official codebase for I-JEPA, the Image-based Joint-Embedding Predictive Architecture. First outlined in the CVPR paper, "Self-supervised learning from images with a joint-embedding predictive architecture."
Python
2,381
star
53

fairscale

PyTorch extensions for high performance and large scale training.
Python
2,319
star
54

audio2photoreal

Code and dataset for photorealistic Codec Avatars driven from audio
Python
2,316
star
55

encodec

State-of-the-art deep learning based audio codec supporting both mono 24 kHz audio and stereo 48 kHz audio.
Python
2,313
star
56

habitat-sim

A flexible, high-performance 3D simulator for Embodied AI research.
C++
2,299
star
57

InferSent

InferSent sentence embeddings
Jupyter Notebook
2,264
star
58

co-tracker

CoTracker is a model for tracking any point (pixel) on a video.
Jupyter Notebook
2,240
star
59

Pearl

A Production-ready Reinforcement Learning AI Agent Library brought by the Applied Reinforcement Learning team at Meta.
Python
2,193
star
60

pyrobot

PyRobot: An Open Source Robotics Research Platform
Python
2,109
star
61

darkforestGo

DarkForest, the Facebook Go engine.
C
2,108
star
62

ELF

An End-To-End, Lightweight and Flexible Platform for Game Research
C++
2,089
star
63

pycls

Codebase for Image Classification Research, written in PyTorch.
Python
2,053
star
64

esm

Evolutionary Scale Modeling (esm): Pretrained language models for proteins
Python
2,026
star
65

frankmocap

A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator
Python
1,972
star
66

video-nonlocal-net

Non-local Neural Networks for Video Classification
Python
1,931
star
67

SentEval

A python tool for evaluating the quality of sentence embeddings.
Python
1,930
star
68

ResNeXt

Implementation of a classification framework from the paper Aggregated Residual Transformations for Deep Neural Networks
Lua
1,863
star
69

SparseConvNet

Submanifold sparse convolutional networks
C++
1,847
star
70

swav

PyTorch implementation of SwAV https//arxiv.org/abs/2006.09882
Python
1,790
star
71

TensorComprehensions

A domain specific language to express machine learning workloads.
C++
1,747
star
72

Mask2Former

Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"
Python
1,638
star
73

habitat-lab

A modular high-level library to train embodied AI agents across a variety of tasks and environments.
Python
1,636
star
74

fvcore

Collection of common code that's shared among different research projects in FAIR computer vision team.
Python
1,623
star
75

TransCoder

Public release of the TransCoder research project https://arxiv.org/pdf/2006.03511.pdf
Python
1,611
star
76

poincare-embeddings

PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"
Python
1,587
star
77

votenet

Deep Hough Voting for 3D Object Detection in Point Clouds
Python
1,563
star
78

pytorch_GAN_zoo

A mix of GAN implementations including progressive growing
Python
1,554
star
79

ClassyVision

An end-to-end PyTorch framework for image and video classification
Python
1,552
star
80

deepcluster

Deep Clustering for Unsupervised Learning of Visual Features
Python
1,544
star
81

higher

higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.
Python
1,524
star
82

UnsupervisedMT

Phrase-Based & Neural Unsupervised Machine Translation
Python
1,496
star
83

consistent_depth

We estimate dense, flicker-free, geometrically consistent depth from monocular video, for example hand-held cell phone video.
Python
1,479
star
84

Detic

Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".
Python
1,446
star
85

end-to-end-negotiator

Deal or No Deal? End-to-End Learning for Negotiation Dialogues
Python
1,368
star
86

multipathnet

A Torch implementation of the object detection network from "A MultiPath Network for Object Detection" (https://arxiv.org/abs/1604.02135)
Lua
1,349
star
87

CommAI-env

A platform for developing AI systems as described in A Roadmap towards Machine Intelligence - http://arxiv.org/abs/1511.08130
1,324
star
88

theseus

A library for differentiable nonlinear optimization
Python
1,306
star
89

ConvNeXt-V2

Code release for ConvNeXt V2 model
Python
1,300
star
90

DPR

Dense Passage Retriever - is a set of tools and models for open domain Q&A task.
Python
1,292
star
91

CrypTen

A framework for Privacy Preserving Machine Learning
Python
1,283
star
92

denoiser

Real Time Speech Enhancement in the Waveform Domain (Interspeech 2020)We provide a PyTorch implementation of the paper Real Time Speech Enhancement in the Waveform Domain. In which, we present a causal speech enhancement model working on the raw waveform that runs in real-time on a laptop CPU. The proposed model is based on an encoder-decoder architecture with skip-connections. It is optimized on both time and frequency domains, using multiple loss functions. Empirical evidence shows that it is capable of removing various kinds of background noise including stationary and non-stationary noises, as well as room reverb. Additionally, we suggest a set of data augmentation techniques applied directly on the raw waveform which further improve model performance and its generalization abilities.
Python
1,272
star
93

DeepSDF

Learning Continuous Signed Distance Functions for Shape Representation
Python
1,191
star
94

TimeSformer

The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"
Python
1,172
star
95

House3D

a Realistic and Rich 3D Environment
C++
1,167
star
96

MaskFormer

Per-Pixel Classification is Not All You Need for Semantic Segmentation (NeurIPS 2021, spotlight)
Python
1,149
star
97

LAMA

LAnguage Model Analysis
Python
1,104
star
98

meshrcnn

code for Mesh R-CNN, ICCV 2019
Python
1,083
star
99

mixup-cifar10

mixup: Beyond Empirical Risk Minimization
Python
1,073
star
100

DomainBed

DomainBed is a suite to test domain generalization algorithms
Python
1,071
star