• Stars
    star
    115
  • Rank 305,916 (Top 7 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 3 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer

By Jingkai Zhou, Pichao Wang*, Fan Wang, Qiong Liu*, Hao Li, Rong Jin

This repo is the official implementation of "ELSA: Enhanced Local Self-Attention for Vision Transformer".

Introduction

Self-attention is powerful in modeling long-range dependencies, but it is weak in local finer-level feature learning. As shown in Figure 1, the performance of local self-attention (LSA) is just on par with convolution and inferior to dynamic filters, which puzzles researchers on whether to use LSA or its counterparts, which one is better, and what makes LSA mediocre. In this work, we comprehensively investigate LSA and its counterparts. We find that the devil lies in the generation and application of spatial attention.

Based on these findings, we propose the enhanced local self-attention (ELSA) with Hadamard attention and the ghost head, as illustrated in Figure 2. Experiments demonstrate the effectiveness of ELSA. Without architecture / hyperparameter modification, The use of ELSA in drop-in replacement boosts baseline methods consistently in both upstream and downstream tasks.

Please refer to our paper for more details.

Model zoo

ImageNet Classification

Model #Params Pretrain Resolution Top1 Acc Download
ELSA-Swin-T 29M ImageNet 1K 224 82.7 google / baidu
ELSA-Swin-S 53M ImageNet 1K 224 83.5 google / baidu
ELSA-Swin-B 93M ImageNet 1K 224 84.0 google / baidu

COCO Object Detection

Backbone Method Pretrain Lr Schd Box mAP Mask mAP #Params Download
ELSA-Swin-T Mask R-CNN ImageNet-1K 1x 45.7 41.1 49M google / baidu
ELSA-Swin-T Mask R-CNN ImageNet-1K 3x 47.5 42.7 49M google / baidu
ELSA-Swin-S Mask R-CNN ImageNet-1K 1x 48.3 43.0 72M google / baidu
ELSA-Swin-S Mask R-CNN ImageNet-1K 3x 49.2 43.6 72M google / baidu
ELSA-Swin-T Cascade Mask R-CNN ImageNet-1K 1x 49.8 43.0 86M google / baidu
ELSA-Swin-T Cascade Mask R-CNN ImageNet-1K 3x 51.0 44.2 86M google / baidu
ELSA-Swin-S Cascade Mask R-CNN ImageNet-1K 1x 51.6 44.4 110M google / baidu
ELSA-Swin-S Cascade Mask R-CNN ImageNet-1K 3x 52.3 45.2 110M google / baidu

ADE20K Semantic Segmentation

Backbone Method Pretrain Crop Size Lr Schd mIoU (ms+flip) #Params Download
ELSA-Swin-T UPerNet ImageNet-1K 512x512 160K 47.9 61M google / baidu
ELSA-Swin-S UperNet ImageNet-1K 512x512 160K 50.4 85M google / baidu

Install

  • Clone this repo:
git clone https://github.com/damo-cv/ELSA.git elsa
cd elsa
  • Create a conda virtual environment and activate it:
conda create -n elsa python=3.7 -y
conda activate elsa
  • Install PyTorch==1.8.0 and torchvision==0.9.0 with CUDA==10.1:
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.1 -c pytorch
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
cd ../
  • Install mmcv-full==1.3.0
pip install mmcv-full==1.3.0 -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.8.0/index.html
  • Install other requirements:
pip install -r requirements.txt
  • Install mmdet and mmseg:
cd ./det
pip install -v -e .
cd ../seg
pip install -v -e .
cd ../
  • Build the elsa operation:
cd ./cls/models/elsa
python setup.py install
mv build/lib*/* .
cp *.so ../../../det/mmdet/models/backbones/elsa/
cp *.so ../../../seg/mmseg/models/backbones/elsa/
cd ../../../

Data preparation

We use standard ImageNet dataset, you can download it from http://image-net.org/. Please prepare it under the following file structure:

$ tree data
imagenet
├── train
│   ├── class1
│   │   ├── img1.jpeg
│   │   ├── img2.jpeg
│   │   └── ...
│   ├── class2
│   │   ├── img3.jpeg
│   │   └── ...
│   └── ...
└── val
    ├── class1
    │   ├── img4.jpeg
    │   ├── img5.jpeg
    │   └── ...
    ├── class2
    │   ├── img6.jpeg
    │   └── ...
    └── ...

Also, please prepare the COCO and ADE20K datasets following their links. Then, please link them to det/data and seg/data.

Evaluation

ImageNet Classification

Run following scripts to evaluate pre-trained models on the ImageNet-1K:

cd cls

python validate.py <PATH_TO_IMAGENET> --model elsa_swin_tiny --checkpoint <CHECKPOINT_FILE> \
  --no-test-pool --apex-amp --img-size 224 -b 128

python validate.py <PATH_TO_IMAGENET> --model elsa_swin_small --checkpoint <CHECKPOINT_FILE> \
  --no-test-pool --apex-amp --img-size 224 -b 128

python validate.py <PATH_TO_IMAGENET> --model elsa_swin_base --checkpoint <CHECKPOINT_FILE> \
  --no-test-pool --apex-amp --img-size 224 -b 128 --use-ema

COCO Detection

Run following scripts to evaluate a detector on the COCO:

cd det

# single-gpu testing
python tools/test.py <CONFIG_FILE> <DET_CHECKPOINT_FILE> --eval bbox segm

# multi-gpu testing
tools/dist_test.sh <CONFIG_FILE> <DET_CHECKPOINT_FILE> <GPU_NUM> --eval bbox segm

ADE20K Semantic Segmentation

Run following scripts to evaluate a model on the ADE20K:

cd seg

# single-gpu testing
python tools/test.py <CONFIG_FILE> <SEG_CHECKPOINT_FILE> --aug-test --eval mIoU

# multi-gpu testing
tools/dist_test.sh <CONFIG_FILE> <SEG_CHECKPOINT_FILE> <GPU_NUM> --aug-test --eval mIoU

Training from scratch

Due to randomness, the re-training results may have a gap of about 0.1~0.2% with the numbers in the paper.

ImageNet Classification

Run following scripts to train classifiers on the ImageNet-1K:

cd cls

bash ./distributed_train.sh 8 <PATH_TO_IMAGENET> --model elsa_swin_tiny \
  --epochs 300 -b 128 -j 8 --opt adamw --lr 1e-3 --sched cosine --weight-decay 5e-2 \
  --warmup-epochs 20 --warmup-lr 1e-6 --min-lr 1e-5 --drop-path 0.1 --aa rand-m9-mstd0.5-inc1 \
  --mixup 0.8 --cutmix 1. --remode pixel --reprob 0.25 --clip-grad 5. --amp

bash ./distributed_train.sh 8 <PATH_TO_IMAGENET> --model elsa_swin_small \
  --epochs 300 -b 128 -j 8 --opt adamw --lr 1e-3 --sched cosine --weight-decay 5e-2 \
  --warmup-epochs 20 --warmup-lr 1e-6 --min-lr 1e-5 --drop-path 0.3 --aa rand-m9-mstd0.5-inc1 \
  --mixup 0.8 --cutmix 1. --remode pixel --reprob 0.25 --clip-grad 5. --amp

bash ./distributed_train.sh 8 <PATH_TO_IMAGENET> --model elsa_swin_base \
  --epochs 300 -b 128 -j 8 --opt adamw --lr 1e-3 --sched cosine --weight-decay 5e-2 \
  --warmup-epochs 20 --warmup-lr 1e-6 --min-lr 1e-5 --drop-path 0.5 --aa rand-m9-mstd0.5-inc1 \
  --mixup 0.8 --cutmix 1. --remode pixel --reprob 0.25 --clip-grad 5. --amp --model-ema

If GPU memory is not enough when training elsa_swin_base, you can use two nodes (2 * 8 GPUs), each with a batch size of 64 images/GPU.

COCO Detection / ADE20K Semantic Segmentation

Run following scripts to train models on the COCO / ADE20K:

cd det 
# (or cd seg)

# multi-gpu training
tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --cfg-options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments] 

Acknowledgement

This work was supported by Alibaba Group through Alibaba Research Intern Program and the National Natural Science Foundation of China (No.61976094).

Codebase from pytorch-image-models, ddfnet, VOLO, Swin-Transformer, Swin-Transformer-Detection, and Swin-Transformer-Semantic-Segmentation

Citing ELSA

@article{zhou2021ELSA,
  title={ELSA: Enhanced Local Self-Attention for Vision Transformer},
  author={Zhou, Jingkai and Wang, Pichao and Wang, Fan and Liu, Qiong and Li, Hao and Jin, Rong},
  journal={arXiv preprint arXiv:2112.12786},
  year={2021}
}

@article{zhou2023limits,
  title={What Limits the Performance of Local Self-attention?},
  author={Zhou, Jingkai and Wang, Pichao and Tang, Jiasheng and Wang, Fan and Liu, Qiong and Li, Hao and Jin, Rong},
  journal={International Journal of Computer Vision},
  pages={1--13},
  year={2023},
  publisher={Springer}
}