ggupset
Plot a combination matrix instead of the standard x-axis and create UpSet plots with ggplot2.
Installation
You can install the released version of ggupset from CRAN with:
# Download package from CRAN
install.packages("ggupset")
# Or get the latest version directly from GitHub
devtools::install_github("const-ae/ggupset")
Example
This is a basic example which shows you how to solve a common problem:
# Load helper packages
library(ggplot2)
library(tidyverse, warn.conflicts = FALSE)
#> Registered S3 method overwritten by 'rvest':
#> method from
#> read_xml.response xml2
#> โโ Attaching packages โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ tidyverse 1.2.1 โโ
#> โ tibble 3.1.4 โ purrr 0.3.4
#> โ tidyr 1.1.3 โ dplyr 1.0.7
#> โ readr 1.3.1 โ stringr 1.4.0
#> โ tibble 3.1.4 โ forcats 0.4.0
#> โโ Conflicts โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ tidyverse_conflicts() โโ
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
# Load my package
library(ggupset)
In the following I will work with a tidy version of the movies dataset
from ggplot. It contains a list of all movies in IMDB, their release
data and other general information on the movie. It also includes a
list
column that contains annotation to which genre a movie belongs
(Action, Drama, Romance etc.)
tidy_movies
#> # A tibble: 50,000 ร 10
#> title year length budget rating votes mpaa Genres stars percent_rating
#> <chr> <int> <int> <int> <dbl> <int> <chr> <list> <dbl> <dbl>
#> 1 Ei ist eiโฆ 1993 90 NA 8.4 15 "" <chr โฆ 1 4.5
#> 2 Hamos stoโฆ 1985 109 NA 5.5 14 "" <chr โฆ 1 4.5
#> 3 Mind Bendโฆ 1963 99 NA 6.4 54 "" <chr โฆ 1 0
#> 4 Trop (peuโฆ 1998 119 NA 4.5 20 "" <chr โฆ 1 24.5
#> 5 Crystaniaโฆ 1995 85 NA 6.1 25 "" <chr โฆ 1 0
#> 6 Totale!, โฆ 1991 102 NA 6.3 210 "" <chr โฆ 1 4.5
#> 7 Visiblemeโฆ 1995 100 NA 4.6 7 "" <chr โฆ 1 24.5
#> 8 Pang shenโฆ 1976 85 NA 7.4 8 "" <chr โฆ 1 0
#> 9 Not as a โฆ 1955 135 2e6 6.6 223 "" <chr โฆ 1 4.5
#> 10 Autobiogrโฆ 1994 87 NA 7.4 5 "" <chr โฆ 1 0
#> # โฆ with 49,990 more rows
ggupset
makes it easy to get an immediate impression how many movies
are in each genre and their combination. For example there are slightly
more than 1200 Dramas in the set, more than 1000 which donโt belong to
any genre and ~170 that are Comedy and Drama.
tidy_movies %>%
distinct(title, year, length, .keep_all=TRUE) %>%
ggplot(aes(x=Genres)) +
geom_bar() +
scale_x_upset(n_intersections = 20)
#> Warning: Removed 100 rows containing non-finite values (stat_count).
Adding Numbers on top
The best feature about ggupset
is that it plays well with existing
tricks from ggplot2
. For example, you can easily add the size of the
counts on top of the bars with this trick from
stackoverflow
tidy_movies %>%
distinct(title, year, length, .keep_all=TRUE) %>%
ggplot(aes(x=Genres)) +
geom_bar() +
geom_text(stat='count', aes(label=after_stat(count)), vjust=-1) +
scale_x_upset(n_intersections = 20) +
scale_y_continuous(breaks = NULL, lim = c(0, 1350), name = "")
#> Warning: Removed 100 rows containing non-finite values (stat_count).
#> Warning: Removed 100 rows containing non-finite values (stat_count).
Reshaping quadratic data
Often enough the raw data you are starting with is not in such a neat
tidy shape. But that is a prerequisite to make such ggupset
plots, so
how can you get from wide dataset to a useful one? And how to actually
create a list
-column, anyway?
Imagine we measured for a set of genes if they are a member of certain pathway. A gene can be a member of multiple pathways and we want to see which pathways have a large overlap. Unfortunately, we didnโt record the data in a tidy format but as a simple matrix.
A ficitional dataset of this type is provided as
gene_pathway_membership
variable
data("gene_pathway_membership")
gene_pathway_membership[, 1:7]
#> Aco1 Aco2 Aif1 Alox8 Amh Bmpr1b Cdc25a
#> Actin dependent Cell Motility FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> Chemokine Secretion TRUE FALSE TRUE TRUE FALSE FALSE FALSE
#> Citric Acid Cycle TRUE TRUE FALSE FALSE FALSE FALSE FALSE
#> Mammalian Oogenesis FALSE FALSE FALSE FALSE TRUE TRUE FALSE
#> Meiotic Cell Cycle FALSE FALSE FALSE FALSE FALSE FALSE TRUE
#> Neuronal Apoptosis FALSE FALSE FALSE FALSE FALSE FALSE FALSE
We will now turn first turn this matrix into a tidy tibble and then plot it
tidy_pathway_member <- gene_pathway_membership %>%
as_tibble(rownames = "Pathway") %>%
gather(Gene, Member, -Pathway) %>%
filter(Member) %>%
select(- Member)
tidy_pathway_member
#> # A tibble: 44 ร 2
#> Pathway Gene
#> <chr> <chr>
#> 1 Chemokine Secretion Aco1
#> 2 Citric Acid Cycle Aco1
#> 3 Citric Acid Cycle Aco2
#> 4 Chemokine Secretion Aif1
#> 5 Chemokine Secretion Alox8
#> 6 Mammalian Oogenesis Amh
#> 7 Mammalian Oogenesis Bmpr1b
#> 8 Meiotic Cell Cycle Cdc25a
#> 9 Meiotic Cell Cycle Cdc25c
#> 10 Chemokine Secretion Chia1
#> # โฆ with 34 more rows
tidy_pathway_member
is already a very good starting point for plotting
with ggplot
. But we care about the genes that are members of multiple
pathways so we will aggregate the data by Gene
and create a
list
-column with the Pathway
information.
tidy_pathway_member %>%
group_by(Gene) %>%
summarize(Pathways = list(Pathway))
#> # A tibble: 37 ร 2
#> Gene Pathways
#> <chr> <list>
#> 1 Aco1 <chr [2]>
#> 2 Aco2 <chr [1]>
#> 3 Aif1 <chr [1]>
#> 4 Alox8 <chr [1]>
#> 5 Amh <chr [1]>
#> 6 Bmpr1b <chr [1]>
#> 7 Cdc25a <chr [1]>
#> 8 Cdc25c <chr [1]>
#> 9 Chia1 <chr [1]>
#> 10 Csf1r <chr [1]>
#> # โฆ with 27 more rows
tidy_pathway_member %>%
group_by(Gene) %>%
summarize(Pathways = list(Pathway)) %>%
ggplot(aes(x = Pathways)) +
geom_bar() +
scale_x_upset()
What if I need more flexibility?
The first important idea is to realize that a list column is just as good as a character vector with the list elements collapsed
tidy_movies %>%
distinct(title, year, length, .keep_all=TRUE) %>%
mutate(Genres_collapsed = sapply(Genres, function(x) paste0(sort(x), collapse = "-"))) %>%
select(title, Genres, Genres_collapsed)
#> # A tibble: 5,000 ร 3
#> title Genres Genres_collapsed
#> <chr> <list> <chr>
#> 1 Ei ist eine geschissene Gottesgabe, Das <chr [1]> "Documentary"
#> 2 Hamos sto aigaio <chr [1]> "Comedy"
#> 3 Mind Benders, The <chr [0]> ""
#> 4 Trop (peu) d'amour <chr [0]> ""
#> 5 Crystania no densetsu <chr [1]> "Animation"
#> 6 Totale!, La <chr [1]> "Comedy"
#> 7 Visiblement je vous aime <chr [0]> ""
#> 8 Pang shen feng <chr [2]> "Action-Animation"
#> 9 Not as a Stranger <chr [1]> "Drama"
#> 10 Autobiographia Dimionit <chr [1]> "Drama"
#> # โฆ with 4,990 more rows
We can easily make a plot using the strings as categorical axis labels
tidy_movies %>%
distinct(title, year, length, .keep_all=TRUE) %>%
mutate(Genres_collapsed = sapply(Genres, function(x) paste0(sort(x), collapse = "-"))) %>%
ggplot(aes(x=Genres_collapsed)) +
geom_bar() +
theme(axis.text.x = element_text(angle=90, hjust=1, vjust=0.5))
Because the process of collapsing list columns into delimited strings is
fairly generic, I provide a new scale that does this automatically
(scale_x_mergelist()
).
tidy_movies %>%
distinct(title, year, length, .keep_all=TRUE) %>%
ggplot(aes(x=Genres)) +
geom_bar() +
scale_x_mergelist(sep = "-") +
theme(axis.text.x = element_text(angle=90, hjust=1, vjust=0.5))
But the problem is that it can be difficult to read those labels.
Instead I provide a third function that replaces the axis labels with a
combination matrix (axis_combmatrix()
).
tidy_movies %>%
distinct(title, year, length, .keep_all=TRUE) %>%
ggplot(aes(x=Genres)) +
geom_bar() +
scale_x_mergelist(sep = "-") +
axis_combmatrix(sep = "-")
One thing that is only possible with the scale_x_upset()
function is
to automatically order the categories and genres by freq
or by
degree
.
tidy_movies %>%
distinct(title, year, length, .keep_all=TRUE) %>%
ggplot(aes(x=Genres)) +
geom_bar() +
scale_x_upset(order_by = "degree")
#> Warning: Removed 1076 rows containing non-finite values (stat_count).
Styling
To make publication ready plots, you often want to have complete control
how each part of a plot looks. This is why I provide an easy way to
style the combination matrix. Simply add a theme_combmatrix()
to the
plot.
tidy_movies %>%
distinct(title, year, length, .keep_all=TRUE) %>%
ggplot(aes(x=Genres)) +
geom_bar() +
scale_x_upset(order_by = "degree") +
theme_combmatrix(combmatrix.panel.point.color.fill = "green",
combmatrix.panel.line.size = 0,
combmatrix.label.make_space = FALSE)
#> Warning: Removed 1076 rows containing non-finite values (stat_count).
Maximum Flexibility
Sometimes the limited styling options using
combmatrix.panel.point.color.fill
are not enough. To fully customize
the combination matrix plot, axis_combmatrix
has an
override_plotting_function
parameter, that allows us to plot anything
in place of the combination matrix.
Let us first reproduce the standard combination plot, but use the
override_plotting_function
parameter to see how it works:
tidy_movies %>%
distinct(title, year, length, .keep_all=TRUE) %>%
ggplot(aes(x=Genres)) +
geom_bar() +
scale_x_mergelist(sep = "-") +
axis_combmatrix(sep = "-", override_plotting_function = function(df){
ggplot(df, aes(x= at, y= single_label)) +
geom_rect(aes(fill= index %% 2 == 0), ymin=df$index-0.5, ymax=df$index+0.5, xmin=0, xmax=1) +
geom_point(aes(color= observed), size = 3) +
geom_line(data= function(dat) dat[dat$observed, ,drop=FALSE], aes(group = labels), size= 1.2) +
ylab("") + xlab("") +
scale_x_continuous(limits = c(0, 1), expand = c(0, 0)) +
scale_fill_manual(values= c(`TRUE` = "white", `FALSE` = "#F7F7F7")) +
scale_color_manual(values= c(`TRUE` = "black", `FALSE` = "#E0E0E0")) +
guides(color="none", fill="none") +
theme(
panel.background = element_blank(),
axis.text.x = element_blank(),
axis.ticks.y = element_blank(),
axis.ticks.length = unit(0, "pt"),
axis.title.y = element_blank(),
axis.title.x = element_blank(),
axis.line = element_blank(),
panel.border = element_blank()
)
})
We can use the above template, to specifically highlight for example all sets that include the Action category.
tidy_movies %>%
distinct(title, year, length, .keep_all=TRUE) %>%
ggplot(aes(x=Genres)) +
geom_bar() +
scale_x_mergelist(sep = "-") +
axis_combmatrix(sep = "-", override_plotting_function = function(df){
print(class(df))
print(df)
df %>%
mutate(action_movie = case_when(
! observed ~ "not observed",
map_lgl(labels_split, ~ "Action" %in% .x) ~ "Action",
observed ~ "Non-Action"
)) %>%
ggplot(aes(x = at, y = single_label)) +
geom_rect(aes(fill = index %% 2 == 0), ymin=df$index-0.5, ymax=df$index+0.5, xmin=0, xmax=1) +
geom_point(aes(color = action_movie), size = 3) +
geom_line(data= function(dat) dat[dat$observed, ,drop=FALSE], aes(group = labels, color = action_movie), size= 1.2) +
ylab("") + xlab("") +
scale_x_continuous(limits = c(0, 1), expand = c(0, 0)) +
scale_fill_manual(values= c(`TRUE` = "white", `FALSE` = "#F7F7F7")) +
scale_color_manual(values= c("Action" = "red", "Non-Action" = "black", "not observed" = "lightgrey")) +
guides(fill="none") +
theme(
legend.position = "bottom",
panel.background = element_blank(),
axis.text.x = element_blank(),
axis.ticks.y = element_blank(),
axis.ticks.length = unit(0, "pt"),
axis.title.y = element_blank(),
axis.title.x = element_blank(),
axis.line = element_blank(),
panel.border = element_blank()
)
}) +
theme(combmatrix.label.total_extra_spacing = unit(30, "pt"))
#> [1] "tbl_df" "tbl" "data.frame"
#> # A tibble: 336 ร 7
#> labels single_label id labels_split at observed index
#> <ord> <ord> <int> <list> <dbl> <lgl> <dbl>
#> 1 "" Short 1 <chr [0]> 0.0124 FALSE 1
#> 2 "Action" Short 2 <chr [1]> 0.0332 FALSE 1
#> 3 "Action-Animation" Short 3 <chr [2]> 0.0539 FALSE 1
#> 4 "Action-Animation-Romaโฆ Short 4 <chr [3]> 0.0747 FALSE 1
#> 5 "Action-Animation-Shorโฆ Short 5 <chr [3]> 0.0954 TRUE 1
#> 6 "Action-Comedy" Short 6 <chr [2]> 0.116 FALSE 1
#> 7 "Action-Comedy-Drama" Short 7 <chr [3]> 0.137 FALSE 1
#> 8 "Action-Comedy-Romance" Short 8 <chr [3]> 0.158 FALSE 1
#> 9 "Action-Comedy-Short" Short 9 <chr [3]> 0.178 TRUE 1
#> 10 "Action-Documentary" Short 10 <chr [2]> 0.199 FALSE 1
#> # โฆ with 326 more rows
The override_plotting_function
is incredibly powerful, but also an
advanced feature that comes with pitfalls. Use at your own risk.
Alternative Packages
There is already a package called UpSetR
(GitHub,
CRAN) that provides very
similar functionality and that heavily inspired me to write this
package. It produces a similar plot with an additional view that shows
the overall size of each genre.
# UpSetR
tidy_movies %>%
distinct(title, year, length, .keep_all=TRUE) %>%
unnest(cols = Genres) %>%
mutate(GenreMember=1) %>%
pivot_wider(names_from = Genres, values_from = GenreMember, values_fill = list(GenreMember = 0)) %>%
as.data.frame() %>%
UpSetR::upset(sets = c("Action", "Romance", "Short", "Comedy", "Drama"), keep.order = TRUE)
# ggupset
tidy_movies %>%
distinct(title, year, length, .keep_all=TRUE) %>%
ggplot(aes(x=Genres)) +
geom_bar() +
scale_x_upset(order_by = "degree", n_sets = 5)
#> Warning: Removed 1311 rows containing non-finite values (stat_count).
The UpSetR
package provides a lot convenient helpers around this kind
of plot; the main advantage of my package is that it can be combined
with any kind of ggplot that uses a categorical x-axis. This additional
flexibility can be useful if you want to create non-standard plots. The
following plot for example shows when movies of a certain genre were
published.
tidy_movies %>%
distinct(title, year, length, .keep_all=TRUE) %>%
ggplot(aes(x=Genres, y=year)) +
geom_violin() +
scale_x_upset(order_by = "freq", n_intersections = 12)
#> Warning: Removed 513 rows containing non-finite values (stat_ydensity).
Advanced examples
1. Complex experimental design
The combination matrix axis can be used to show complex experimental designs, where each sample got a combination of different treatments.
df_complex_conditions
#> # A tibble: 360 ร 4
#> KO DrugA Timepoint response
#> <lgl> <chr> <dbl> <dbl>
#> 1 TRUE Yes 8 84.3
#> 2 TRUE Yes 8 105.
#> 3 TRUE Yes 8 79.1
#> 4 TRUE Yes 8 140.
#> 5 TRUE Yes 8 108.
#> 6 TRUE Yes 8 79.5
#> 7 TRUE Yes 8 112.
#> 8 TRUE Yes 8 118.
#> 9 TRUE Yes 8 114.
#> 10 TRUE Yes 8 92.4
#> # โฆ with 350 more rows
df_complex_conditions %>%
mutate(Label = pmap(list(KO, DrugA, Timepoint), function(KO, DrugA, Timepoint){
c(if(KO) "KO" else "WT", if(DrugA == "Yes") "Drug", paste0(Timepoint, "h"))
})) %>%
ggplot(aes(x=Label, y=response)) +
geom_boxplot() +
geom_jitter(aes(color=KO), width=0.1) +
geom_smooth(method = "lm", aes(group = paste0(KO, "-", DrugA))) +
scale_x_upset(order_by = "degree",
sets = c("KO", "WT", "Drug", "8h", "24h", "48h"),
position="top", name = "") +
theme_combmatrix(combmatrix.label.text = element_text(size=12),
combmatrix.label.extra_spacing = 5)
#> `geom_smooth()` using formula 'y ~ x'
2. Aggregation of information
dplyr
currently does not support list columns as grouping variables.
In that case it makes sense to collapse it manually and use the
axis_combmatrix()
function to get a good looking plot.
# Percentage of votes for n stars for top 12 genres
avg_rating <- tidy_movies %>%
mutate(Genres_collapsed = sapply(Genres, function(x) paste0(sort(x), collapse="-"))) %>%
mutate(Genres_collapsed = fct_lump(fct_infreq(as.factor(Genres_collapsed)), n=12)) %>%
group_by(stars, Genres_collapsed) %>%
summarize(percent_rating = sum(votes * percent_rating)) %>%
group_by(Genres_collapsed) %>%
mutate(percent_rating = percent_rating / sum(percent_rating)) %>%
arrange(Genres_collapsed)
#> `summarise()` has grouped output by 'stars'. You can override using the `.groups` argument.
avg_rating
#> # A tibble: 130 ร 3
#> # Groups: Genres_collapsed [13]
#> stars Genres_collapsed percent_rating
#> <dbl> <fct> <dbl>
#> 1 1 Drama 0.0437
#> 2 2 Drama 0.0411
#> 3 3 Drama 0.0414
#> 4 4 Drama 0.0433
#> 5 5 Drama 0.0506
#> 6 6 Drama 0.0717
#> 7 7 Drama 0.129
#> 8 8 Drama 0.175
#> 9 9 Drama 0.170
#> 10 10 Drama 0.235
#> # โฆ with 120 more rows
# Plot using the combination matrix axis
# the red lines indicate the average rating per genre
ggplot(avg_rating, aes(x=Genres_collapsed, y=stars, fill=percent_rating)) +
geom_tile() +
stat_summary_bin(aes(y=percent_rating * stars), fun = sum, geom="point",
shape="โ", color="red", size=6) +
axis_combmatrix(sep = "-", levels = c("Drama", "Comedy", "Short",
"Documentary", "Action", "Romance", "Animation", "Other")) +
scale_fill_viridis_c()
Saving Plots
There is an important pitfall when trying to save a plot with a
combination matrix. When you use ggsave()
, ggplot2 automatically saves
the last plot that was created. However, here last_plot()
refers to
only the combination matrix. To store the full plot, you need to
explicitly assign it to a variable and save that.
pl <- tidy_movies %>%
distinct(title, year, length, .keep_all=TRUE) %>%
ggplot(aes(x=Genres)) +
geom_bar() +
scale_x_upset(n_intersections = 20)
ggsave("/tmp/movie_genre_barchart.png", plot = pl)
#> Saving 7 x 5 in image
Session Info
sessionInfo()
#> R version 3.6.2 (2019-12-12)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 18.04.5 LTS
#>
#> Matrix products: default
#> BLAS: /usr/lib/x86_64-linux-gnu/openblas/libblas.so.3
#> LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.2.20.so
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=de_DE.UTF-8 LC_COLLATE=en_US.UTF-8
#> [5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=de_DE.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] ggupset_0.3.0.9001 forcats_0.4.0 stringr_1.4.0 dplyr_1.0.7
#> [5] purrr_0.3.4 readr_1.3.1 tidyr_1.1.3 tibble_3.1.4
#> [9] tidyverse_1.2.1 ggplot2_3.3.5
#>
#> loaded via a namespace (and not attached):
#> [1] tidyselect_1.1.1 xfun_0.25 splines_3.6.2 haven_2.1.0
#> [5] lattice_0.20-38 colorspace_1.4-1 vctrs_0.3.8 generics_0.0.2
#> [9] viridisLite_0.3.0 htmltools_0.3.6 mgcv_1.8-31 yaml_2.2.0
#> [13] utf8_1.1.4 rlang_0.4.11 pillar_1.6.2 glue_1.4.2
#> [17] withr_2.4.2 DBI_1.0.0 modelr_0.1.4 readxl_1.3.1
#> [21] plyr_1.8.4 lifecycle_1.0.0 munsell_0.5.0 gtable_0.3.0
#> [25] cellranger_1.1.0 rvest_0.3.3 evaluate_0.13 UpSetR_1.3.3
#> [29] labeling_0.3 knitr_1.33 fansi_0.4.0 highr_0.8
#> [33] broom_0.5.2 Rcpp_1.0.1 scales_1.0.0 backports_1.1.4
#> [37] jsonlite_1.6 gridExtra_2.3 hms_0.4.2 digest_0.6.18
#> [41] stringi_1.4.3 grid_3.6.2 cli_3.0.1 tools_3.6.2
#> [45] magrittr_1.5 crayon_1.3.4 pkgconfig_2.0.2 Matrix_1.2-18
#> [49] ellipsis_0.3.2 xml2_1.2.0 lubridate_1.7.4 rmarkdown_2.10
#> [53] httr_1.4.2 rstudioapi_0.13 R6_2.4.0 nlme_3.1-143
#> [57] compiler_3.6.2