• Stars
    star
    3
  • Rank 3,967,020 (Top 79 %)
  • Language
    Julia
  • Created about 7 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Exact Diagonalization in the Hubbard model with Julia 1.0.3. We use the LOBPCG method to diagonalize the Hamiltonian. The particle number is fixed.

More Repositories

1

TightBinding.jl

This can construct the tight-binding model and calculate energies
Jupyter Notebook
64
star
2

QM

In Japanese. Juliaで学ぶ量子力学
Jupyter Notebook
62
star
3

DLAP2020

Jupyter Notebook
23
star
4

DMFT_withJulia

DMFT with CTQMC. The Dynamical Mean Field Theory (DMFT) with the continuous-time auxiliary-field Quantum Monte Carlo method with Julia 1.0.0.
Jupyter Notebook
17
star
5

TightBinding

In Japanese. Juliaで学ぶタイトバインディング模型とトポロジカル物質
Jupyter Notebook
13
star
6

MC

In Japanese. Juliaで学ぶ古典モンテカルロシミュレーション
Jupyter Notebook
10
star
7

Julianotes

Julia language notes
7
star
8

ChebyshevPolynomialBdG

This solves the Bogoliubov-de Gennes equations and gap equations in the s-wave superconductor with the use of the Chebyshev polynomial method. See, Y. Nagai, Y. Ota and M. Machida [arXiv:1105.4939 or DOI:10.1143/JPSJ.81.024710]
Python
7
star
9

DFT

実験家のための第一原理計算入門 (in Japanese)
6
star
10

VortexLattice

Chebyshev polynomial method for the Bogoliubov-de Gennes equations in the s-wave superconductor with a vortex lattice with Julia 1.0.0. See, Y. Nagai, Y. Ota and M. Machida, J. Phys. Soc. Jpn. 81, 024710 (2012).
Jupyter Notebook
5
star
11

JuliaFromFortran

4
star
12

ExactDiagonalization-in-the-Hubbard-model

This calculates the minimum eigenvalue in the Hubbard model with the use of the exact diagonalization method.
Python
4
star
13

RSCG

This solves the Bogoliubov-de Gennes equations and gap equations in the s-wave superconductor with the use of the Reduced-Shifted Conjugate-Gradient Method method. See, Y. Nagai, Y. Shinohara, Y. Futamura, and T. Sakurai,[arXiv:1607.03992v2 or DOI:10.7566/JPSJ.86.014708]. http://dx.doi.org/10.7566/JPSJ.86.014708
Python
4
star
14

ctaux_Julia

Continuous-time auxiliary-field quantum Monte Carlo method. See, E. Gull et al., EPL 82, 57003 (2008)
Jupyter Notebook
3
star
15

4sitesHubbard

4サイトフェルミオンハバード模型を色々な手法で解く
Jupyter Notebook
3
star
16

fortran_csr

CSR format in Fortran
Fortran
3
star
17

TDGL.jl

Time-dependent Ginzburg-Landau simulations
Julia
2
star
18

PIMD_with_QE_aenet_Docker

Dockerfile
2
star
19

HPhiJulia.jl

Julia wrapper for the HPhi
Julia
2
star
20

SSwithJulia

Sakurai-Sugiura method to obtain the eigenvalues located in a given domain with Julia 1.0.0. See, T. Sakurai and H. Sugiura: J. Comput. Appl. Math. 159 (2003) 119. and "Numerical Construction of a Low-Energy Effective Hamiltonian in a Self-Consistent Bogoliubov–de Gennes Approach of Superconductivity", Yuki Nagai et al., J. Phys. Soc. Jpn. 82, 094701 (2013) or arXiv:1303.3683
Julia
2
star
21

RSCG_Julia

This solves the Bogoliubov-de Gennes equations and gap equations in the s-wave superconductor with the use of the Reduced-Shifted Conjugate-Gradient Method method. See, Y. Nagai, Y. Shinohara, Y. Futamura, and T. Sakurai,[arXiv:1607.03992v2 or DOI:10.7566/JPSJ.86.014708]. http://dx.doi.org/10.7566/JPSJ.86.014708
Jupyter Notebook
2
star
22

OpenMX_Docker

Dockerfile
1
star
23

FindingTypeAny.jl

Julia
1
star
24

MPIDistributedArrays.jl

DistributedArrays with MPI
Julia
1
star
25

BdG_cpp

This solves the Bogoliubov-de Gennes equations and gap equations in the s-wave superconductor with the use of the Reduced-Shifted Conjugate-Gradient Method method. See, Y. Nagai, Y. Shinohara, Y. Futamura, and T. Sakurai,[arXiv:1607.03992v2 or DOI:10.7566/JPSJ.86.014708]. http://dx.doi.org/10.7566/JPSJ.86.014708
C++
1
star
26

FluxKAN.jl

An easy to use Flux implementation of the Kolmogorov Arnold Network. This is a Julia version of TorchKAN.
Julia
1
star