• Stars
    star
    3
  • Rank 3,967,023 (Top 79 %)
  • Language
    Jupyter Notebook
  • Created over 5 years ago
  • Updated about 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

4サイトフェルミオンハバード模型を色々な手法で解く

More Repositories

1

TightBinding.jl

This can construct the tight-binding model and calculate energies
Jupyter Notebook
64
star
2

QM

In Japanese. Juliaで学ぶ量子力学
Jupyter Notebook
62
star
3

DLAP2020

Jupyter Notebook
23
star
4

DMFT_withJulia

DMFT with CTQMC. The Dynamical Mean Field Theory (DMFT) with the continuous-time auxiliary-field Quantum Monte Carlo method with Julia 1.0.0.
Jupyter Notebook
17
star
5

TightBinding

In Japanese. Juliaで学ぶタイトバインディング模型とトポロジカル物質
Jupyter Notebook
13
star
6

MC

In Japanese. Juliaで学ぶ古典モンテカルロシミュレーション
Jupyter Notebook
10
star
7

Julianotes

Julia language notes
7
star
8

ChebyshevPolynomialBdG

This solves the Bogoliubov-de Gennes equations and gap equations in the s-wave superconductor with the use of the Chebyshev polynomial method. See, Y. Nagai, Y. Ota and M. Machida [arXiv:1105.4939 or DOI:10.1143/JPSJ.81.024710]
Python
7
star
9

DFT

実験家のための第一原理計算入門 (in Japanese)
6
star
10

VortexLattice

Chebyshev polynomial method for the Bogoliubov-de Gennes equations in the s-wave superconductor with a vortex lattice with Julia 1.0.0. See, Y. Nagai, Y. Ota and M. Machida, J. Phys. Soc. Jpn. 81, 024710 (2012).
Jupyter Notebook
5
star
11

JuliaFromFortran

4
star
12

ExactDiagonalization-in-the-Hubbard-model

This calculates the minimum eigenvalue in the Hubbard model with the use of the exact diagonalization method.
Python
4
star
13

RSCG

This solves the Bogoliubov-de Gennes equations and gap equations in the s-wave superconductor with the use of the Reduced-Shifted Conjugate-Gradient Method method. See, Y. Nagai, Y. Shinohara, Y. Futamura, and T. Sakurai,[arXiv:1607.03992v2 or DOI:10.7566/JPSJ.86.014708]. http://dx.doi.org/10.7566/JPSJ.86.014708
Python
4
star
14

ctaux_Julia

Continuous-time auxiliary-field quantum Monte Carlo method. See, E. Gull et al., EPL 82, 57003 (2008)
Jupyter Notebook
3
star
15

fortran_csr

CSR format in Fortran
Fortran
3
star
16

ExactDiagonalization_with_Julia

Exact Diagonalization in the Hubbard model with Julia 1.0.3. We use the LOBPCG method to diagonalize the Hamiltonian. The particle number is fixed.
Julia
3
star
17

TDGL.jl

Time-dependent Ginzburg-Landau simulations
Julia
2
star
18

PIMD_with_QE_aenet_Docker

Dockerfile
2
star
19

HPhiJulia.jl

Julia wrapper for the HPhi
Julia
2
star
20

SSwithJulia

Sakurai-Sugiura method to obtain the eigenvalues located in a given domain with Julia 1.0.0. See, T. Sakurai and H. Sugiura: J. Comput. Appl. Math. 159 (2003) 119. and "Numerical Construction of a Low-Energy Effective Hamiltonian in a Self-Consistent Bogoliubov–de Gennes Approach of Superconductivity", Yuki Nagai et al., J. Phys. Soc. Jpn. 82, 094701 (2013) or arXiv:1303.3683
Julia
2
star
21

RSCG_Julia

This solves the Bogoliubov-de Gennes equations and gap equations in the s-wave superconductor with the use of the Reduced-Shifted Conjugate-Gradient Method method. See, Y. Nagai, Y. Shinohara, Y. Futamura, and T. Sakurai,[arXiv:1607.03992v2 or DOI:10.7566/JPSJ.86.014708]. http://dx.doi.org/10.7566/JPSJ.86.014708
Jupyter Notebook
2
star
22

OpenMX_Docker

Dockerfile
1
star
23

FindingTypeAny.jl

Julia
1
star
24

MPIDistributedArrays.jl

DistributedArrays with MPI
Julia
1
star
25

BdG_cpp

This solves the Bogoliubov-de Gennes equations and gap equations in the s-wave superconductor with the use of the Reduced-Shifted Conjugate-Gradient Method method. See, Y. Nagai, Y. Shinohara, Y. Futamura, and T. Sakurai,[arXiv:1607.03992v2 or DOI:10.7566/JPSJ.86.014708]. http://dx.doi.org/10.7566/JPSJ.86.014708
C++
1
star
26

FluxKAN.jl

An easy to use Flux implementation of the Kolmogorov Arnold Network. This is a Julia version of TorchKAN.
Julia
1
star