There are no reviews yet. Be the first to send feedback to the community and the maintainers!
TightBinding.jl
This can construct the tight-binding model and calculate energiesQM
In Japanese. Juliaで学ぶ量子力学DLAP2020
DMFT_withJulia
DMFT with CTQMC. The Dynamical Mean Field Theory (DMFT) with the continuous-time auxiliary-field Quantum Monte Carlo method with Julia 1.0.0.TightBinding
In Japanese. Juliaで学ぶタイトバインディング模型とトポロジカル物質MC
In Japanese. Juliaで学ぶ古典モンテカルロシミュレーションJulianotes
Julia language notesChebyshevPolynomialBdG
This solves the Bogoliubov-de Gennes equations and gap equations in the s-wave superconductor with the use of the Chebyshev polynomial method. See, Y. Nagai, Y. Ota and M. Machida [arXiv:1105.4939 or DOI:10.1143/JPSJ.81.024710]DFT
実験家のための第一原理計算入門 (in Japanese)VortexLattice
Chebyshev polynomial method for the Bogoliubov-de Gennes equations in the s-wave superconductor with a vortex lattice with Julia 1.0.0. See, Y. Nagai, Y. Ota and M. Machida, J. Phys. Soc. Jpn. 81, 024710 (2012).JuliaFromFortran
ExactDiagonalization-in-the-Hubbard-model
This calculates the minimum eigenvalue in the Hubbard model with the use of the exact diagonalization method.RSCG
This solves the Bogoliubov-de Gennes equations and gap equations in the s-wave superconductor with the use of the Reduced-Shifted Conjugate-Gradient Method method. See, Y. Nagai, Y. Shinohara, Y. Futamura, and T. Sakurai,[arXiv:1607.03992v2 or DOI:10.7566/JPSJ.86.014708]. http://dx.doi.org/10.7566/JPSJ.86.014708ctaux_Julia
Continuous-time auxiliary-field quantum Monte Carlo method. See, E. Gull et al., EPL 82, 57003 (2008)4sitesHubbard
4サイトフェルミオンハバード模型を色々な手法で解くfortran_csr
CSR format in FortranExactDiagonalization_with_Julia
Exact Diagonalization in the Hubbard model with Julia 1.0.3. We use the LOBPCG method to diagonalize the Hamiltonian. The particle number is fixed.TDGL.jl
Time-dependent Ginzburg-Landau simulationsPIMD_with_QE_aenet_Docker
HPhiJulia.jl
Julia wrapper for the HPhiSSwithJulia
Sakurai-Sugiura method to obtain the eigenvalues located in a given domain with Julia 1.0.0. See, T. Sakurai and H. Sugiura: J. Comput. Appl. Math. 159 (2003) 119. and "Numerical Construction of a Low-Energy Effective Hamiltonian in a Self-Consistent Bogoliubov–de Gennes Approach of Superconductivity", Yuki Nagai et al., J. Phys. Soc. Jpn. 82, 094701 (2013) or arXiv:1303.3683OpenMX_Docker
FindingTypeAny.jl
MPIDistributedArrays.jl
DistributedArrays with MPIBdG_cpp
This solves the Bogoliubov-de Gennes equations and gap equations in the s-wave superconductor with the use of the Reduced-Shifted Conjugate-Gradient Method method. See, Y. Nagai, Y. Shinohara, Y. Futamura, and T. Sakurai,[arXiv:1607.03992v2 or DOI:10.7566/JPSJ.86.014708]. http://dx.doi.org/10.7566/JPSJ.86.014708FluxKAN.jl
An easy to use Flux implementation of the Kolmogorov Arnold Network. This is a Julia version of TorchKAN.Love Open Source and this site? Check out how you can help us