• Stars
    star
    131
  • Rank 275,867 (Top 6 %)
  • Language
    Python
  • Created over 6 years ago
  • Updated about 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Pytorch Implementation of Low Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss

WGAN_VGG [DEPRECATED]

Implementation of Low Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss https://arxiv.org/abs/1708.00961


DATASET

The 2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge by Mayo Clinic (I can't share this data, you should ask at the URL below if you want)
https://www.aapm.org/GrandChallenge/LowDoseCT/

The data_path should look like:

data_path
├── L067
│   ├── quarter_3mm
│   │       ├── L067_QD_3_1.CT.0004.0001 ~ .IMA
│   │       ├── L067_QD_3_1.CT.0004.0002 ~ .IMA
│   │       └── ...
│   └── full_3mm
│           ├── L067_FD_3_1.CT.0004.0001 ~ .IMA
│           ├── L067_FD_3_1.CT.0004.0002 ~ .IMA
│           └── ...
├── L096
│   ├── quarter_3mm
│   │       └── ...
│   └── full_3mm
│           └── ...      
...
│
└── L506
    ├── quarter_3mm
    │       └── ...
    └── full_3mm
            └── ...     

Use

Check the arguments.

  1. run python prep.py to convert 'dicom file' to 'numpy array'
  2. run python main.py --load_mode=0 to training. If the available memory(RAM) is more than 10GB, it is faster to run --load_mode=1.
  3. run python main.py --mode='test' --test_iters=*** to test.