• Stars
    star
    223
  • Rank 178,458 (Top 4 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 5 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

PyTorchPipe (PTP) is a component-oriented framework for rapid prototyping and training of computational pipelines combining vision and language

PyTorchPipe

Language GitHub license GitHub version

Build Status Language grade: Python Total alerts Coverage Status Maintainability

Description

PyTorchPipe (PTP) is a component-oriented framework that facilitates development of computational multi-modal pipelines and comparison of diverse neural network-based models.

PTP frames training and testing procedures as pipelines consisting of many components communicating through data streams. Each such a stream can consist of several components, including one task instance (providing batches of data), any number of trainable components (models) and additional components providing required transformations and computations.

Alt text

As a result, the training & testing procedures are no longer pinned to a specific task or model, and built-in mechanisms for compatibility checking (handshaking), configuration and global variables management & statistics collection facilitate rapid development of complex pipelines and running diverse experiments.

In its core, to accelerate the computations on their own, PTP relies on PyTorch and extensively uses its mechanisms for distribution of computations on CPUs/GPUs, including multi-process data loaders and multi-GPU data parallelism. The models are agnostic to those operations and one indicates whether to use them in configuration files (data loaders) or by passing adequate argument (--gpu) at run-time.

Please refer to the tutorial presentation for more details.

Datasets: PTP focuses on multi-modal reasoning combining vision and language. Currently it offers the following Tasks from the following task, categorized into three domains:

Alt text

Aside of providing batches of samples, the Task class will automatically download the files associated with a given dataset (as long as the dataset is publicly available). The diversity of those tasks (and the associated models) proves the flexibility of the framework. We are constantly working on incorporation of new Tasks into PTP.

Pipelines: What people typically define as a model in PTP is framed as a pipeline, consisting of many inter-connected components, with one or more Models containing trainable elements. Those components are loosely coupled and care only about the input streams they retrieve and output streams they produce. The framework offers full flexibility and it is up to the programmer to choose the granularity of his/her components/models/pipelines. Such a decomposition enables one to easily combine many components and models into pipelines, whereas the framework supports loading of pretrained models, freezing during training, saving them to checkpoints etc.

Model/Component Zoo: PTP provides several ready to use, out of the box models and other, non-trainable (but parametrizable) components.

Alt text

The model zoo includes several general usage components, such as:

  • Feed Forward Network (variable number of Fully Connected layers with activation functions and dropout)
  • Recurrent Neural Network (different cell types with activation functions and dropout, a single model can work both as encoder or decoder)

It also inludes few models specific for a given domain, but still quite general:

  • Convnet Encoder (CNNs with ReLU and MaxPooling, can work with different sizes of images)
  • General Image Encoder (wrapping several models from Torch Vision)
  • Sentence Embeddings (encoding words using the embedding layer)

There are also some classical baselines both for vision like LeNet-5 or language domains, e.g. Seq2Seq (Sequence to Sequence model) or Attention Decoder (RNN-based decoder implementing Bahdanau-style attention). PTP also offers the several models useful for multi-modal fusion and reasoning.

Alt text

The framework also offers components useful when working with language, vision or other types of streams (e.g. tensor transformations). There are also several general-purpose components, from components calculating losses and statistics to publishers and viewers.

Workers: PTP workers are python scripts that are agnostic to the tasks/models/pipelines that they are supposed to work with. Currently framework offers three workers:

  • ptp-offline-trainer (a trainer relying on classical methodology interlacing training and validation at the end of every epoch, creates separate instances of training and validation tasks and trains the models by feeding the created pipeline with batches of data, relying on the notion of an epoch)

  • ptp-online-trainer (a flexible trainer creating separate instances of training and validation tasks and training the models by feeding the created pipeline with batches of data, relying on the notion of an episode)

  • ptp-processor (performing one pass over the all samples returned by a given task instance, useful for collecting scores on test set, answers for submissions to competitions etc.)

Installation

PTP relies on PyTorch, so you need to install it first. Please refer to the official installation guide for details. It is easily installable via conda_, or you can compile it from source to optimize it for your machine.

PTP is not (yet) available as a pip package, or on conda. However, we provide the setup.py script and recommend to use it for installation. First please clone the project repository:

git clone [email protected]:IBM/pytorchpipe.git
cd pytorchpipe/

Next, install the dependencies by running:

  python setup.py develop

This command will install all dependencies via pip_, while still enabling you to change the code of the existing components/workers and running them by calling the associated ptp-* commands. More in that subject can be found in the following blog post on dev_mode.

Quick start: MNIST image classification with a simple ConvNet model

Please consider a simple ConvNet model consisting of two parts:

  • few convolutional layers accepting the MNIST images and returning feature maps being, in general, a 4D tensor (first dimension being the batch size, a rule of thumb in PTP),
  • one (or more) dense layers that accept the (flattened) feature maps and return predictions in the form of logarithm of probability distributions (LogSoftmax as last non-linearity).

Training the model

Assume that we will use NLL Loss function, and, besides, want to monitor the Accuracy statistics. The resulting pipeline is presented below. The additional Answer Decoder component translates the predictions into class names, whereas Stream Viewer displays content of the indicated data streams for a single sample randomly picked from the batch.

Alt text

Note: The associated mnist_classification_convnet_softmax.yml configuration file can be found in configs/tutorials folder.

We will train the model with ptp-offline-trainer, a general worker script that follows the classical training-validation, epoch-based methodology. This means, that despite the presence of three sections (associated with training, validation and test splits of the MNIST dataset) the trainer will consider only the content of training and validation sections (plus pipeline, containing the definition of the whole pipeline). Let's run the training by calling the following from the command line:

ptp-offline-trainer --c configs/tutorials/mnist_classification_convnet_softmax.yml

Note: Please call offline-trainer --h to learn more about the run-time arguments. In order to understand the structure of the main configuration file please look at the default configuration file of the trainer located in configs/default/workers folder.

The trainer will log on the console training and validation statistis, along with additional information logged by the components, e.g. contents of the streams:

[2019-07-05 13:31:44] - INFO - OfflineTrainer >>> episode 006000; epoch 06; loss 0.1968410313; accuracy 0.9219
[2019-07-05 13:31:45] - INFO - OfflineTrainer >>> End of epoch: 6
================================================================================
[2019-07-05 13:31:45] - INFO - OfflineTrainer >>> episode 006019; episodes_aggregated 000860; epoch 06; loss 0.1799264401; loss_min 0.0302138925; loss_max 0.5467863679; loss_std 0.0761705562; accuracy 0.94593; accuracy_std 0.02871 [Full Training]
[2019-07-05 13:31:45] - INFO - OfflineTrainer >>> Validating over the entire validation set (5000 samples in 79 episodes)
[2019-07-05 13:31:45] - INFO - stream_viewer >>> Showing selected streams for sample 20 (index: 55358):
 'labels': One
 'targets': 1
 'predictions': tensor([-1.1452e+01, -1.6804e-03, -1.1357e+01, -1.1923e+01, -6.6160e+00,
        -1.4658e+01, -9.6191e+00, -8.6472e+00, -9.6082e+00, -1.3505e+01])
 'predicted_answers': One

Please note that whenever the validation loss goes down, the trainer automatically will save the pipeline to the checkpoint file:

[2019-07-05 13:31:47] - INFO - OfflineTrainer >>> episode 006019; episodes_aggregated 000079; epoch 06; loss 0.1563445479; loss_min 0.0299939774; loss_max 0.5055227876; loss_std 0.0854654983; accuracy 0.95740; accuracy_std 0.02495 [Full Validation]
[2019-07-05 13:31:47] - INFO - mnist_classification_convnet_softmax >>> Exporting pipeline 'mnist_classification_convnet_softmax' parameters to checkpoint:
 /users/tomaszkornuta/experiments/mnist/mnist_classification_convnet_softmax/20190705_132624/checkpoints/mnist_classification_convnet_softmax_best.pt
  + Model 'image_encoder' [ConvNetEncoder] params saved
  + Model 'classifier' [FeedForwardNetwork] params saved

After the training finsh the trainer will inform about the termination reason and indicate where the experiment files (model checkpoint, log files, statistics etc.) can be found:

[2019-07-05 13:32:33] - INFO - mnist_classification_convnet_softmax >>> Updated training status in checkpoint:
 /users/tomaszkornuta/experiments/mnist/mnist_classification_convnet_softmax/20190705_132624/checkpoints/mnist_classification_convnet_softmax_best.pt
[2019-07-05 13:32:33] - INFO - OfflineTrainer >>>
================================================================================
[2019-07-05 13:32:33] - INFO - OfflineTrainer >>> Training finished because Converged (Full Validation Loss went below Loss Stop threshold of 0.15)
[2019-07-05 13:32:33] - INFO - OfflineTrainer >>> Experiment finished!
[2019-07-05 13:32:33] - INFO - OfflineTrainer >>> Experiment logged to: /users/tomaszkornuta/experiments/mnist/mnist_classification_convnet_softmax/20190705_132624/

Testing the model

In order to test the model generalization we will use ptp-processor, yet another general worker script that performs a single pass over the indicated set.

Alt text

ptp-processor --load /users/tomaszkornuta/experiments/mnist/mnist_classification_convnet_softmax/20190705_132624/checkpoints/mnist_classification_convnet_softmax_best.pt

Note: ptp-processor uses the content of test section as default, but it can be changed at run-time. Please call ptp-processor --h to learn about the available run-time arguments.

[2019-07-05 13:34:41] - INFO - Processor >>> episode 000313; episodes_aggregated 000157; loss 0.1464060694; loss_min 0.0352710858; loss_max 0.3801054060; loss_std 0.0669835582; accuracy 0.95770; accuracy_std 0.02471 [Full Set]
[2019-07-05 13:34:41] - INFO - Processor >>> Experiment logged to: /users/tomaszkornuta/experiments/mnist/mnist_classification_convnet_softmax/20190705_132624/test_20190705_133436/

Note: Please analyze the mnist_classification_convnet_softmax.yml configuration file (located in configs/tutorials directory). Keep in mind that:

  • all components come with default configuration files, located in configs/default/components folders,
  • all workers come with default configuration files, located in configs/default/workers folders.

Documentation

Currently PTP does not have an on-line documentation. However, there are high-quality comments in all source/configuration files, that will be used for automatic generation of documentation (Sphinx + ReadTheDocs). Besides, we have shared a tutorial presentation explaining motivations and core concepts as well as providing hints how to use the tool and develop your own solutions.

Contributions

PTP is open for external contributions. We follow the Git Branching Model, in short:

  • develop branch is the main branch, master branch is for used for releases only
  • all changes are integrated by merging pull requests from feat/fix/other branches
  • PTP is integrated with several DevOps monitoring the quality of code/pull requests
  • we strongly encourage unit testing and Test-Driven Development
  • we use projects and kanban to monitor issues/progress/etc.

Maintainers

A project of the Machine Intelligence team, IBM Research AI, Almaden Research Center.

HitCount

More Repositories

1

sarama

Sarama is a Go library for Apache Kafka.
Go
11,359
star
2

plex

The package of IBM’s typeface, IBM Plex.
CSS
9,603
star
3

css-gridish

Automatically build your grid design’s CSS Grid code, CSS Flexbox fallback code, Sketch artboards, and Chrome extension.
CSS
2,253
star
4

openapi-to-graphql

Translate APIs described by OpenAPI Specifications (OAS) into GraphQL
TypeScript
1,609
star
5

fp-go

functional programming library for golang
Go
1,550
star
6

Project_CodeNet

This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX
Python
1,537
star
7

fhe-toolkit-linux

IBM Fully Homomorphic Encryption Toolkit For Linux. This toolkit is a Linux based Docker container that demonstrates computing on encrypted data without decrypting it! The toolkit ships with two demos including a fully encrypted Machine Learning inference with a Neural Network and a Privacy-Preserving key-value search.
C++
1,436
star
8

pytorch-seq2seq

An open source framework for seq2seq models in PyTorch.
Python
1,431
star
9

ibm.github.io

IBM Open Source at GitHub
JavaScript
1,106
star
10

Dromedary

Dromedary: towards helpful, ethical and reliable LLMs.
Python
1,104
star
11

MicroscoPy

An open-source, motorized, and modular microscope built using LEGO bricks, Arduino, Raspberry Pi and 3D printing.
Python
1,102
star
12

MAX-Image-Resolution-Enhancer

Upscale an image by a factor of 4, while generating photo-realistic details.
Python
863
star
13

differential-privacy-library

Diffprivlib: The IBM Differential Privacy Library
Python
819
star
14

elasticsearch-spark-recommender

Use Jupyter Notebooks to demonstrate how to build a Recommender with Apache Spark & Elasticsearch
Jupyter Notebook
806
star
15

build-blockchain-insurance-app

Sample insurance application using Hyperledger Fabric
JavaScript
719
star
16

FfDL

Fabric for Deep Learning (FfDL, pronounced fiddle) is a Deep Learning Platform offering TensorFlow, Caffe, PyTorch etc. as a Service on Kubernetes
Go
676
star
17

spring-boot-microservices-on-kubernetes

In this code we demonstrate how a simple Spring Boot application can be deployed on top of Kubernetes. This application, Office Space, mimicks the fictitious app idea from Michael Bolton in the movie "Office Space".
JavaScript
548
star
18

cloud-native-starter

Cloud Native Starter for Java/Jakarta EE based Microservices on Kubernetes and Istio
Shell
516
star
19

openapi-validator

Configurable and extensible validator/linter for OpenAPI documents
JavaScript
496
star
20

federated-learning-lib

A library for federated learning (a distributed machine learning process) in an enterprise environment.
Python
495
star
21

clai

Command Line Artificial Intelligence or CLAI is an open-sourced project from IBM Research aimed to bring the power of AI to the command line interface.
Python
476
star
22

nicedoc.io

pretty README as service.
JavaScript
473
star
23

import-tracker

Python utility for tracking third party dependencies within a library
Python
457
star
24

mac-ibm-enrollment-app

The Mac@IBM enrollment app makes setting up macOS with Jamf Pro more intuitive for users and easier for IT. The application offers IT admins the ability to gather additional information about their users during setup, allows users to customize their enrollment by selecting apps or bundles of apps to install during setup, and provides users with next steps when enrollment is complete.
Swift
455
star
25

mobx-react-router

Keep your MobX state in sync with react-router
JavaScript
440
star
26

EvolveGCN

Code for EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs
Python
384
star
27

fhe-toolkit-macos

IBM Homomorphic Encryption Toolkit For MacOS
C++
358
star
28

AutoMLPipeline.jl

A package that makes it trivial to create and evaluate machine learning pipeline architectures.
HTML
355
star
29

aihwkit

IBM Analog Hardware Acceleration Kit
Jupyter Notebook
352
star
30

graphql-query-generator

Randomly generates GraphQL queries from a GraphQL schema
TypeScript
337
star
31

zshot

Zero and Few shot named entity & relationships recognition
Python
336
star
32

lale

Library for Semi-Automated Data Science
Python
333
star
33

portieris

A Kubernetes Admission Controller for verifying image trust.
Go
330
star
34

FedMA

Code for Federated Learning with Matched Averaging, ICLR 2020.
Python
326
star
35

BluePic

WARNING: This repository is no longer maintained ⚠️ This repository will not be updated. The repository will be kept available in read-only mode.
Swift
325
star
36

evote

A voting application that leverages Hyperledger Fabric and the IBM Blockchain Platform to record and tally ballots.
JavaScript
320
star
37

TabFormer

Code & Data for "Tabular Transformers for Modeling Multivariate Time Series" (ICASSP, 2021)
Python
319
star
38

powerai-counting-cars

Run a Jupyter Notebook to detect, track, and count cars in a video using Maximo Visual Insights (formerly PowerAI Vision) and OpenCV
Jupyter Notebook
317
star
39

blockchain-network-on-kubernetes

Demonstrates the steps involved in setting up your business network on Hyperledger Fabric using Kubernetes APIs on IBM Cloud Kubernetes Service.
Shell
305
star
40

charts

The IBM/charts repository provides helm charts for IBM and Third Party middleware.
Smarty
297
star
41

IBM-Z-zOS

The helpful and handy location for finding and sharing z/OS files, which are not included in the product.
REXX
296
star
42

mac-ibm-notifications

macOS agent used to display custom notifications and alerts to the end user.
Swift
294
star
43

blockchain-application-using-fabric-java-sdk

Create and Deploy a Blockchain Network using Hyperledger Fabric SDK Java
Java
290
star
44

MAX-Object-Detector

Localize and identify multiple objects in a single image.
Python
286
star
45

design-kit

The IBM Design kit is a collection of tools aimed to help you design and prototype experiences faster, with confidence and thoughtfulness. This kit is based on the IBM Design System. Also, you may use this documentation to create add-on libraries to the IBM Design System or submit bugs to the current system.
272
star
46

AccDNN

A compiler from AI model to RTL (Verilog) accelerator in FPGA hardware with auto design space exploration.
Verilog
270
star
47

deploy-ibm-cloud-private

Instructions and Code required to install IBM Cloud Private
HCL
263
star
48

audit-ci

Audit NPM, Yarn, PNPM, and Bun dependencies in continuous integration environments, preventing integration if vulnerabilities are found at or above a configurable threshold while ignoring allowlisted advisories
TypeScript
261
star
49

vue-a11y-calendar

Accessible, internationalized Vue calendar
JavaScript
253
star
50

UQ360

Uncertainty Quantification 360 (UQ360) is an extensible open-source toolkit that can help you estimate, communicate and use uncertainty in machine learning model predictions.
Python
252
star
51

watson-banking-chatbot

A chatbot for banking that uses the Watson Assistant, Discovery, Natural Language Understanding and Tone Analyzer services.
JavaScript
250
star
52

ibm-generative-ai

IBM-Generative-AI is a Python library built on IBM's large language model REST interface to seamlessly integrate and extend this service in Python programs.
Python
246
star
53

Kubernetes-container-service-GitLab-sample

This code shows how a common multi-component GitLab can be deployed on Kubernetes cluster. Each component (NGINX, Ruby on Rails, Redis, PostgreSQL, and more) runs in a separate container or group of containers.
Shell
243
star
54

transition-amr-parser

SoTA Abstract Meaning Representation (AMR) parsing with word-node alignments in Pytorch. Includes checkpoints and other tools such as statistical significance Smatch.
Python
241
star
55

tensorflow-hangul-recognition

Handwritten Korean Character Recognition with TensorFlow and Android
Python
232
star
56

molformer

Repository for MolFormer
Jupyter Notebook
228
star
57

BlockchainNetwork-CompositeJourney

Part 1 in a series of patterns showing the building blocks of a Blockchain application
Shell
227
star
58

LNN

A `Neural = Symbolic` framework for sound and complete weighted real-value logic
Python
225
star
59

Graph2Seq

Graph2Seq is a simple code for building a graph-encoder and sequence-decoder for NLP and other AI/ML/DL tasks.
Python
219
star
60

ModuleFormer

ModuleFormer is a MoE-based architecture that includes two different types of experts: stick-breaking attention heads and feedforward experts. We released a collection of ModuleFormer-based Language Models (MoLM) ranging in scale from 4 billion to 8 billion parameters.
Python
219
star
61

data-prep-kit

Open source project for data preparation of LLM application builders
Jupyter Notebook
217
star
62

Scalable-WordPress-deployment-on-Kubernetes

This code showcases the full power of Kubernetes clusters and shows how can we deploy the world's most popular website framework on top of world's most popular container orchestration platform.
Shell
214
star
63

janusgraph-utils

Develop a graph database app using JanusGraph
Java
207
star
64

tensorflow-large-model-support

Large Model Support in Tensorflow
201
star
65

Scalable-Cassandra-deployment-on-Kubernetes

In this code we provide a full roadmap the deployment of a multi-node scalable Cassandra cluster on Kubernetes. Cassandra understands that it is running within a cluster manager, and uses this cluster management infrastructure to help implement the application. Kubernetes concepts like Replication Controller, StatefulSets etc. are leveraged to deploy either non-persistent or persistent Cassandra clusters on Kubernetes cluster.
Shell
195
star
66

adaptive-federated-learning

Code for paper "Adaptive Federated Learning in Resource Constrained Edge Computing Systems"
Python
193
star
67

action-recognition-pytorch

This is the pytorch implementation of some representative action recognition approaches including I3D, S3D, TSN and TAM.
Python
193
star
68

gantt-chart

IBM Gantt Chart Component, integrable in Vanilla, jQuery, or React Framework.
JavaScript
193
star
69

api-samples

Samples code that uses QRadar API's
Python
192
star
70

cdfsl-benchmark

(ECCV 2020) Cross-Domain Few-Shot Learning Benchmarking System
Python
190
star
71

kube101

Kubernetes 101 workshop (https://ibm.github.io/kube101/)
Shell
181
star
72

CrossViT

Official implementation of CrossViT. https://arxiv.org/abs/2103.14899
Python
180
star
73

rl-testbed-for-energyplus

Reinforcement Learning Testbed for Power Consumption Optimization using EnergyPlus
Python
180
star
74

browser-functions

A lightweight serverless platform that uses Web Browsers as execution engines
JavaScript
180
star
75

pwa-lit-template

A template for building Progressive Web Applications using Lit and Vaadin Router.
TypeScript
178
star
76

fastfit

FastFit ⚡ When LLMs are Unfit Use FastFit ⚡ Fast and Effective Text Classification with Many Classes
Python
174
star
77

AMLSim

The AMLSim project is intended to provide a multi-agent based simulator that generates synthetic banking transaction data together with a set of known money laundering patterns - mainly for the purpose of testing machine learning models and graph algorithms. We welcome you to enhance this effort since the data set related to money laundering is critical to advance detection capabilities of money laundering activities.
Python
170
star
78

socket-io

A Socket.IO client for C#
C#
169
star
79

tfjs-web-app

A TensorFlow.js Progressive Web App for Offline Visual Recognition
JavaScript
164
star
80

spark-tpc-ds-performance-test

Use the TPC-DS benchmark to test Spark SQL performance
TSQL
160
star
81

simulai

A toolkit with data-driven pipelines for physics-informed machine learning.
Python
157
star
82

watson-online-store

Learn how to use Watson Assistant and Watson Discovery. This application demonstrates a simple abstraction of a chatbot interacting with a Cloudant NoSQL database, using a Slack UI.
HTML
156
star
83

unitxt

🦄 Unitxt: a python library for getting data fired up and set for training and evaluation
Python
155
star
84

istio101

Istio 101 workshop (https://ibm.github.io/istio101/)
Shell
154
star
85

Medical-Blockchain

A healthcare data management platform built on blockchain that stores medical data off-chain
Vue
150
star
86

terratorch

a Python toolkit for fine-tuning Geospatial Foundation Models (GFMs).
Python
148
star
87

node-odbc

ODBC bindings for node
JavaScript
146
star
88

taxinomitis

Source code for Machine Learning for Kids site
JavaScript
143
star
89

watson-assistant-slots-intro

A Chatbot for ordering a pizza that demonstrates how using the IBM Watson Assistant Slots feature, one can fill out an order, form, or profile.
JavaScript
143
star
90

tsfm

Foundation Models for Time Series
Jupyter Notebook
143
star
91

SALMON

Self-Alignment with Principle-Following Reward Models
Python
142
star
92

ipfs-social-proof

IPFS Social Proof: A decentralized identity and social proof system
JavaScript
142
star
93

kgi-slot-filling

This is the code for our KILT leaderboard submissions (KGI + Re2G models).
Python
141
star
94

etcd-java

Alternative etcd3 java client
Java
141
star
95

regression-transformer

Regression Transformer (2023; Nature Machine Intelligence)
Python
140
star
96

deploy-react-kubernetes

Built for developers who are interested in learning how to deploy a React application on Kubernetes, this pattern uses the React and Redux framework and calls the OMDb API to look up movie information based on user input. This pattern can be built and run on both Docker and Kubernetes.
JavaScript
139
star
97

probabilistic-federated-neural-matching

Bayesian Nonparametric Federated Learning of Neural Networks
Python
137
star
98

innovate-digital-bank

This repository contains instructions to build a digital bank composed of a set of microservices that communicate with each other. Using Nodejs, Express, MongoDB and deployed to a Kubernetes cluster on IBM Cloud.
JavaScript
137
star
99

core-dump-handler

Save core dumps from a Kubernetes Service or RedHat OpenShift to an S3 protocol compatible object store
Rust
136
star
100

KubeflowDojo

Repository to hold code, instructions, demos and pointers to presentation assets for Kubeflow Dojo
Jupyter Notebook
133
star