• Stars
    star
    270
  • Rank 152,189 (Top 3 %)
  • Language Verilog
  • License
    Apache License 2.0
  • Created about 5 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A compiler from AI model to RTL (Verilog) accelerator in FPGA hardware with auto design space exploration.

AccDNN (Accelerator Core Compiler for Deep Neural Network)

This project is also named as DNNBuilder in our academic research.

Project Description:

In this project, we proposed a novel solution that can automatically convert the Caffe trained deep neural network to the FPGA RTL level implementation without involving any programming effort, and also provide uniform APIs to the users for their recognition task. Thus the developers, without any FPGA programming experience, can deploy their FPGA accelerated deep learning service in the data center or edge devices only providing their trained Caffe model. This work was published in ICCAD'18, and won the Best Paper Award for Front-end. For more design details. please refer to our paper.

The conversion consists of three stages,

  1. Caffe net file is firstly parsed to obtain the net structure. We estimate the workload of each layer to determine the parallelism level under the constraints of FPFA resource.

  2. Each layer defined in this net generates a customized Verilog module through instantiating corresponding neural layer in the library. The top level module is also generated by connecting these customized instances together based on the layer sequence defined in the net file, and the required on-chip memory for weights is also generated in this stage.

  3. Synthesize the generated source files, placement and layout to generate the executable FPGA bit file.

AccDNN Constraints:

  1. Only support the models trained by Caffe framework.

  2. Only support convolutional layer, max pooling layer, fully connected layer, and batch normalization layer.

  3. The total number of convolutional and fully connected layers in the network defined in Caffe .prototxt should be less than 15 layers

Requirements:

  1. To make sure you can use the quantized caffe model, please install ristretto Caffe instead of BVLC caffe following the instructions here, tested on rc3, and also the Python caffe by runing the Make pycaffe and pip install -r requirements.txt in caffe/python. Make sure that you have compiled the Python Caffe interface and that it is on your PYTHONPATH. Please also set the ACCDNN_ROOT.
    export PYTHONPATH=path/to/caffe/python
    export ACCDNN_ROOT=path/to/AccDNN
  1. Clone the Power-AI-Engine repository, and add the Power-AI-Engine SDK to environment. (optional for IBM POWER FPGA Acceleration)
    export FPGA_SDK_PATH=path/to/Power-AI-Engine/FPGA-SDK
  1. Install Xilinx Vidado software, and also add to environment, the hardware SDK was tested on Vivado 2017.4.
    export VIVADO_PATH=path/to/Xilinx/Vivado/201x.x/bin
  1. Clone the AccDNN repository.
    git clone https://github.com/IBM/AccDNN.git

Run the cifar10 demo to only generate the IP core of the accelerator

python ./codegen.py example/cifar10/cifar10_quick.prototxt \
	example/cifar10/cifar10_quick_iter_5000.caffemodel \
	--optim_file example/cifar10/optim_cifar10.conf \
	--batch_size 1 \
	--profile

The parameters are very similar to the pie command. You could use the --profile parameter to get the profile of the accelerator, including the network structure sumary, FPGA resource usage, and the projected performance. If you ommit this parameter, the IP core of the accelerator will be generated in the ./build directory, which maybe take several minutes to complete based on the model size.

In the build directory that the AccDNN generates includes:

src/ All the generated verilog source files will be stored in this directory, and the top module is model.v

coe/ All the weights related files will be stored in this directory, including the coe file for ROM, and bin file for DDR.

timing/ All the timing constraints related files will be stored in this directory.

ips.tcl This TCL file is used to generate the Xilinx IP cores that will be instantiated in the accelerator.

imp_file.f This file is a list of the verilog source files that will be used in the accelerator, and the lib verilog files are also included.

file_list.txt You could add this file in your Vivado project, to import all the accelerator required files into your customized Vivado project.

Data input/output format

Input format:

The input data sequece follows WHC format,which is different from Caffe's CHW format. For batch mode, the input data should be interleaved. For example, if batch size is 2, the input data of each pixel should be R1,R2,G1,G2,B1,B2,...If INPUT_CHANNEL_PADDING in settings.py is set to 1, the padding should be also interleaved as R1,R2,G1,G2,B1,B2,0,0...

Output format:

The output data sequence is a little complicated.

If the last layer is fully connected layer, the output sequece is simple, same sequence as the output vector.

If the last layer is convolutional layer, the result is output column by column. In each column, the output is interleaved according to the KPF of the last convolutional layer.

In each column, the first KPF elements of the first feature (red block in h(1)) will be output, followed by the first KPF elements of the second feature (red block in h(2)), after all the red blocks in this column are output, the second KPF elements in each feature of this column will be output by sequence. Then, the blue block, the green block, …

Example of the output format.

If batch size is larger than 1, each block contains KPF * batch_size elements, the first KPF elements of first image, followed by the second KPF elements of second image, ...

Quantization/Precision constraints for activations and weights

The bitwidth of the activations could be 16/8 bits, and the bitwidth of the weights could be 16/8/4 bits. The bitwidth of the weights can not be larger than that of the activations. For example, 4 bits activations with 8 bits weights is not allowed.

When the activation is 16 bits, the bitwdith of the weights could be 16/8/4 bits, the DSP block is only used for one multiplier.

When the activation is 8 bits, the bitwidth of the weights could be 8/4 bits, the DSP block will be used for two multipliers, resulting in doubled throughput.

When the activation is 8 bits (weight is 8/4 bits), the KPF and the kernel number of this layer should be both even. If the kernel number of this particular layer is odd, one extra channel padding (with all weights zeros) is required. Otherwise, it will padding both activation and weight to 16 bits, and the doubled throughput can not be achieved.

Simulation without involing hardware

We will use a tiny neural network trained on CIFAR10 data to demonstrate the procedure of the simulation function in AccDNN. Only Vivado 2013.4 is supported in this simulation environment.

  1. Set AccDNN to simulation environment by changing the variable SIMULATION_ONLY in settings.py to True.

  2. Use AccDNN to convert the target deep neural network to Verilog HDL source code, here we take a tiny network for CIFAR10 as the example.

    python ./codegen.py example/cifar10/cifar10_quick.prototxt  \
                        example/cifar10/cifar10_quick_iter_5000.caffemodel \
                        --optim_file example/cifar10/optim_cifar10.conf
  1. Use the command ./bin/sim_file_gen.sh to generate the simulation environment

  2. Use the following command to generate the simulation test data.

    python tools/sim_data_gen.py example/cifar10/cifar10_quick.prototxt \
                                 example/cifar10/cifar10_quick_iter_5000.caffemodel \
                                 example/cifar10/test.png
  1. cd sim/tb/ and vsim to start the modelsim

  2. In the Transcript, modify the Xilinx IP simulation lib path in sim_model.tcl (line 23-25), then type the command source sim_model.tcl, comp_model to compile the simulation project and use sim to start the simulation process.

  3. Use the command python tools/compare.py sim_result_file real_file to verfiy the correction of the simulation result. All the files will be stored in sim/data directory. For example, if you want to check if the simulation output of pool3 is correct, you can use the following command. Please note that GUI is required in this comparison step.

    python tools/compare.py sim/data/pool3_sim.dat sim/data/pool3.dat

Beyond the demo: quantization, batch mode and tips for high FPGA resource utilization

The DW, WQ, DQ is only avalibale when the input model file has no quantization information, also you can use explicit quantization setting in model file, and the format define in ristretto Caffe is supported. The model trained or tunned by ristretto Caffe could be directly input to AccDNN.

Due to the limited bandwidth of off-chip memory, it has been proved to use the batch mode to increase the data reuse. You can set the BATCH_SIZE in settings.py, the max batch size is 32.

It is much better to set appropriate CPF and KPF for each layer to achieve high FPGA resource utilization in the .conf file. CPF means the number of channels in 3D convolution to be computed simultaneously. KPF means the number of kernels in 3D convolutions to be computed simultaneously. There is an example in example/cifar10/optim_cifar10.conf.

Adjust each layer's CPF and KPF to let each layer have close delays, whcih could make the whole pipeline more efficient. You could use the follow command to profile the network (take cifar10 model for the example) first, and the final FPGA resource utilization is also provided, whcih is better to be close to 1.0.

python ./codegen.py example/cifar10/cifar10_quick.prototxt  \
                    example/cifar10/cifar10_quick_iter_5000.caffemodel \
                    --optim_file example/cifar10/optim_cifar10.conf \
                    --profile

The report generated by the profiling also provides the required DDR bandwidth. Higher CPF/KFP will reuqire higher DDR bandwidth, and achieve much lower latency. It is not a good design if the required DDR bandwidth is much larger than the physical DDR bandwidth. The total DSPs and on-chip memory (BLOCK RAM) required in this design are also provided. After determining the CPF/KFP, you can set appropriate batch size to fully utilize the DSPs and BLOCK RAM resources in FPGA.

Each layer (if it has weights) will require a DMA channel. To have better timing, it is much better to set the DMA delay in the .conf file, especially for large scale FPGAs. This value should be between 0~2 [default=0]. At the beginning, you could set it to 0, and if you find there is serious timing issue in this DMA channel after routing, you could set this manually to have better timing in DMA module.

Auto optimization

AccDNN also provides auto optimization with given FPGA resources to achieve low latency and maximal throughput. If you don't provide the optimal_file, the auto optimization will be performed.

Other demos

Besides the cifar10 demo, we also provide the ZF, VGG16, YOLO models in the 'example/'.

Contact:

Jun Song Wang, IBM Research China, [email protected]

Xiaofan Zhang, University of Illinois at Urbana-Champaign, [email protected]

Citation

If you find AccDNN/DNNBuilder useful in your research, please consider to cite our paper:

@inproceedings{DNNBuilder,
  title={DNNBuilder: an Automated Tool for Building High-Performance DNN Hardware Accelerators for FPGAs},
  author={Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun Xiong, Wen-mei Hwu, Deming Chen},
  booktitle={Proceedings of IEEE/ACM International Conference on Computer-Aided Design},
  year={2018}
}

More Repositories

1

sarama

Sarama is a Go library for Apache Kafka.
Go
11,359
star
2

plex

The package of IBM’s typeface, IBM Plex.
CSS
9,603
star
3

css-gridish

Automatically build your grid design’s CSS Grid code, CSS Flexbox fallback code, Sketch artboards, and Chrome extension.
CSS
2,253
star
4

openapi-to-graphql

Translate APIs described by OpenAPI Specifications (OAS) into GraphQL
TypeScript
1,609
star
5

fp-go

functional programming library for golang
Go
1,550
star
6

Project_CodeNet

This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX
Python
1,537
star
7

fhe-toolkit-linux

IBM Fully Homomorphic Encryption Toolkit For Linux. This toolkit is a Linux based Docker container that demonstrates computing on encrypted data without decrypting it! The toolkit ships with two demos including a fully encrypted Machine Learning inference with a Neural Network and a Privacy-Preserving key-value search.
C++
1,436
star
8

pytorch-seq2seq

An open source framework for seq2seq models in PyTorch.
Python
1,431
star
9

ibm.github.io

IBM Open Source at GitHub
JavaScript
1,106
star
10

Dromedary

Dromedary: towards helpful, ethical and reliable LLMs.
Python
1,104
star
11

MicroscoPy

An open-source, motorized, and modular microscope built using LEGO bricks, Arduino, Raspberry Pi and 3D printing.
Python
1,102
star
12

MAX-Image-Resolution-Enhancer

Upscale an image by a factor of 4, while generating photo-realistic details.
Python
863
star
13

differential-privacy-library

Diffprivlib: The IBM Differential Privacy Library
Python
819
star
14

elasticsearch-spark-recommender

Use Jupyter Notebooks to demonstrate how to build a Recommender with Apache Spark & Elasticsearch
Jupyter Notebook
806
star
15

build-blockchain-insurance-app

Sample insurance application using Hyperledger Fabric
JavaScript
719
star
16

FfDL

Fabric for Deep Learning (FfDL, pronounced fiddle) is a Deep Learning Platform offering TensorFlow, Caffe, PyTorch etc. as a Service on Kubernetes
Go
676
star
17

spring-boot-microservices-on-kubernetes

In this code we demonstrate how a simple Spring Boot application can be deployed on top of Kubernetes. This application, Office Space, mimicks the fictitious app idea from Michael Bolton in the movie "Office Space".
JavaScript
548
star
18

cloud-native-starter

Cloud Native Starter for Java/Jakarta EE based Microservices on Kubernetes and Istio
Shell
516
star
19

openapi-validator

Configurable and extensible validator/linter for OpenAPI documents
JavaScript
496
star
20

federated-learning-lib

A library for federated learning (a distributed machine learning process) in an enterprise environment.
Python
495
star
21

clai

Command Line Artificial Intelligence or CLAI is an open-sourced project from IBM Research aimed to bring the power of AI to the command line interface.
Python
476
star
22

nicedoc.io

pretty README as service.
JavaScript
473
star
23

import-tracker

Python utility for tracking third party dependencies within a library
Python
457
star
24

mac-ibm-enrollment-app

The Mac@IBM enrollment app makes setting up macOS with Jamf Pro more intuitive for users and easier for IT. The application offers IT admins the ability to gather additional information about their users during setup, allows users to customize their enrollment by selecting apps or bundles of apps to install during setup, and provides users with next steps when enrollment is complete.
Swift
455
star
25

mobx-react-router

Keep your MobX state in sync with react-router
JavaScript
440
star
26

EvolveGCN

Code for EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs
Python
384
star
27

fhe-toolkit-macos

IBM Homomorphic Encryption Toolkit For MacOS
C++
358
star
28

AutoMLPipeline.jl

A package that makes it trivial to create and evaluate machine learning pipeline architectures.
HTML
355
star
29

aihwkit

IBM Analog Hardware Acceleration Kit
Jupyter Notebook
352
star
30

graphql-query-generator

Randomly generates GraphQL queries from a GraphQL schema
TypeScript
337
star
31

zshot

Zero and Few shot named entity & relationships recognition
Python
336
star
32

lale

Library for Semi-Automated Data Science
Python
333
star
33

portieris

A Kubernetes Admission Controller for verifying image trust.
Go
330
star
34

FedMA

Code for Federated Learning with Matched Averaging, ICLR 2020.
Python
326
star
35

BluePic

WARNING: This repository is no longer maintained ⚠️ This repository will not be updated. The repository will be kept available in read-only mode.
Swift
325
star
36

evote

A voting application that leverages Hyperledger Fabric and the IBM Blockchain Platform to record and tally ballots.
JavaScript
320
star
37

TabFormer

Code & Data for "Tabular Transformers for Modeling Multivariate Time Series" (ICASSP, 2021)
Python
319
star
38

powerai-counting-cars

Run a Jupyter Notebook to detect, track, and count cars in a video using Maximo Visual Insights (formerly PowerAI Vision) and OpenCV
Jupyter Notebook
317
star
39

blockchain-network-on-kubernetes

Demonstrates the steps involved in setting up your business network on Hyperledger Fabric using Kubernetes APIs on IBM Cloud Kubernetes Service.
Shell
305
star
40

charts

The IBM/charts repository provides helm charts for IBM and Third Party middleware.
Smarty
297
star
41

IBM-Z-zOS

The helpful and handy location for finding and sharing z/OS files, which are not included in the product.
REXX
296
star
42

mac-ibm-notifications

macOS agent used to display custom notifications and alerts to the end user.
Swift
294
star
43

blockchain-application-using-fabric-java-sdk

Create and Deploy a Blockchain Network using Hyperledger Fabric SDK Java
Java
290
star
44

MAX-Object-Detector

Localize and identify multiple objects in a single image.
Python
286
star
45

design-kit

The IBM Design kit is a collection of tools aimed to help you design and prototype experiences faster, with confidence and thoughtfulness. This kit is based on the IBM Design System. Also, you may use this documentation to create add-on libraries to the IBM Design System or submit bugs to the current system.
272
star
46

deploy-ibm-cloud-private

Instructions and Code required to install IBM Cloud Private
HCL
263
star
47

audit-ci

Audit NPM, Yarn, PNPM, and Bun dependencies in continuous integration environments, preventing integration if vulnerabilities are found at or above a configurable threshold while ignoring allowlisted advisories
TypeScript
261
star
48

vue-a11y-calendar

Accessible, internationalized Vue calendar
JavaScript
253
star
49

UQ360

Uncertainty Quantification 360 (UQ360) is an extensible open-source toolkit that can help you estimate, communicate and use uncertainty in machine learning model predictions.
Python
252
star
50

watson-banking-chatbot

A chatbot for banking that uses the Watson Assistant, Discovery, Natural Language Understanding and Tone Analyzer services.
JavaScript
250
star
51

ibm-generative-ai

IBM-Generative-AI is a Python library built on IBM's large language model REST interface to seamlessly integrate and extend this service in Python programs.
Python
246
star
52

Kubernetes-container-service-GitLab-sample

This code shows how a common multi-component GitLab can be deployed on Kubernetes cluster. Each component (NGINX, Ruby on Rails, Redis, PostgreSQL, and more) runs in a separate container or group of containers.
Shell
243
star
53

transition-amr-parser

SoTA Abstract Meaning Representation (AMR) parsing with word-node alignments in Pytorch. Includes checkpoints and other tools such as statistical significance Smatch.
Python
241
star
54

tensorflow-hangul-recognition

Handwritten Korean Character Recognition with TensorFlow and Android
Python
232
star
55

molformer

Repository for MolFormer
Jupyter Notebook
228
star
56

BlockchainNetwork-CompositeJourney

Part 1 in a series of patterns showing the building blocks of a Blockchain application
Shell
227
star
57

LNN

A `Neural = Symbolic` framework for sound and complete weighted real-value logic
Python
225
star
58

pytorchpipe

PyTorchPipe (PTP) is a component-oriented framework for rapid prototyping and training of computational pipelines combining vision and language
Python
223
star
59

Graph2Seq

Graph2Seq is a simple code for building a graph-encoder and sequence-decoder for NLP and other AI/ML/DL tasks.
Python
219
star
60

ModuleFormer

ModuleFormer is a MoE-based architecture that includes two different types of experts: stick-breaking attention heads and feedforward experts. We released a collection of ModuleFormer-based Language Models (MoLM) ranging in scale from 4 billion to 8 billion parameters.
Python
219
star
61

data-prep-kit

Open source project for data preparation of LLM application builders
Jupyter Notebook
217
star
62

Scalable-WordPress-deployment-on-Kubernetes

This code showcases the full power of Kubernetes clusters and shows how can we deploy the world's most popular website framework on top of world's most popular container orchestration platform.
Shell
214
star
63

janusgraph-utils

Develop a graph database app using JanusGraph
Java
207
star
64

tensorflow-large-model-support

Large Model Support in Tensorflow
201
star
65

Scalable-Cassandra-deployment-on-Kubernetes

In this code we provide a full roadmap the deployment of a multi-node scalable Cassandra cluster on Kubernetes. Cassandra understands that it is running within a cluster manager, and uses this cluster management infrastructure to help implement the application. Kubernetes concepts like Replication Controller, StatefulSets etc. are leveraged to deploy either non-persistent or persistent Cassandra clusters on Kubernetes cluster.
Shell
195
star
66

adaptive-federated-learning

Code for paper "Adaptive Federated Learning in Resource Constrained Edge Computing Systems"
Python
193
star
67

action-recognition-pytorch

This is the pytorch implementation of some representative action recognition approaches including I3D, S3D, TSN and TAM.
Python
193
star
68

gantt-chart

IBM Gantt Chart Component, integrable in Vanilla, jQuery, or React Framework.
JavaScript
193
star
69

api-samples

Samples code that uses QRadar API's
Python
192
star
70

cdfsl-benchmark

(ECCV 2020) Cross-Domain Few-Shot Learning Benchmarking System
Python
190
star
71

kube101

Kubernetes 101 workshop (https://ibm.github.io/kube101/)
Shell
181
star
72

CrossViT

Official implementation of CrossViT. https://arxiv.org/abs/2103.14899
Python
180
star
73

rl-testbed-for-energyplus

Reinforcement Learning Testbed for Power Consumption Optimization using EnergyPlus
Python
180
star
74

browser-functions

A lightweight serverless platform that uses Web Browsers as execution engines
JavaScript
180
star
75

pwa-lit-template

A template for building Progressive Web Applications using Lit and Vaadin Router.
TypeScript
178
star
76

fastfit

FastFit ⚑ When LLMs are Unfit Use FastFit ⚑ Fast and Effective Text Classification with Many Classes
Python
174
star
77

AMLSim

The AMLSim project is intended to provide a multi-agent based simulator that generates synthetic banking transaction data together with a set of known money laundering patterns - mainly for the purpose of testing machine learning models and graph algorithms. We welcome you to enhance this effort since the data set related to money laundering is critical to advance detection capabilities of money laundering activities.
Python
170
star
78

socket-io

A Socket.IO client for C#
C#
169
star
79

tfjs-web-app

A TensorFlow.js Progressive Web App for Offline Visual Recognition
JavaScript
164
star
80

spark-tpc-ds-performance-test

Use the TPC-DS benchmark to test Spark SQL performance
TSQL
160
star
81

simulai

A toolkit with data-driven pipelines for physics-informed machine learning.
Python
157
star
82

watson-online-store

Learn how to use Watson Assistant and Watson Discovery. This application demonstrates a simple abstraction of a chatbot interacting with a Cloudant NoSQL database, using a Slack UI.
HTML
156
star
83

unitxt

πŸ¦„ Unitxt: a python library for getting data fired up and set for training and evaluation
Python
155
star
84

istio101

Istio 101 workshop (https://ibm.github.io/istio101/)
Shell
154
star
85

Medical-Blockchain

A healthcare data management platform built on blockchain that stores medical data off-chain
Vue
150
star
86

terratorch

a Python toolkit for fine-tuning Geospatial Foundation Models (GFMs).
Python
148
star
87

node-odbc

ODBC bindings for node
JavaScript
146
star
88

taxinomitis

Source code for Machine Learning for Kids site
JavaScript
143
star
89

watson-assistant-slots-intro

A Chatbot for ordering a pizza that demonstrates how using the IBM Watson Assistant Slots feature, one can fill out an order, form, or profile.
JavaScript
143
star
90

tsfm

Foundation Models for Time Series
Jupyter Notebook
143
star
91

SALMON

Self-Alignment with Principle-Following Reward Models
Python
142
star
92

ipfs-social-proof

IPFS Social Proof: A decentralized identity and social proof system
JavaScript
142
star
93

kgi-slot-filling

This is the code for our KILT leaderboard submissions (KGI + Re2G models).
Python
141
star
94

etcd-java

Alternative etcd3 java client
Java
141
star
95

regression-transformer

Regression Transformer (2023; Nature Machine Intelligence)
Python
140
star
96

deploy-react-kubernetes

Built for developers who are interested in learning how to deploy a React application on Kubernetes, this pattern uses the React and Redux framework and calls the OMDb API to look up movie information based on user input. This pattern can be built and run on both Docker and Kubernetes.
JavaScript
139
star
97

probabilistic-federated-neural-matching

Bayesian Nonparametric Federated Learning of Neural Networks
Python
137
star
98

innovate-digital-bank

This repository contains instructions to build a digital bank composed of a set of microservices that communicate with each other. Using Nodejs, Express, MongoDB and deployed to a Kubernetes cluster on IBM Cloud.
JavaScript
137
star
99

core-dump-handler

Save core dumps from a Kubernetes Service or RedHat OpenShift to an S3 protocol compatible object store
Rust
136
star
100

KubeflowDojo

Repository to hold code, instructions, demos and pointers to presentation assets for Kubeflow Dojo
Jupyter Notebook
133
star