• Stars
    star
    228
  • Rank 175,267 (Top 4 %)
  • Language
    Jupyter Notebook
  • License
    Apache License 2.0
  • Created about 2 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Repository for MolFormer

This repository provides pytorch source code, and data associated with our Nature Machine Intelligence (10.1038/s42256-022-00580-7) publication, "Large-Scale Chemical Language Representations Capture Molecular Structure and Properties".

Paper: NMI Link / Arxiv Link

MoLFormer

MoLFormer is a large-scale chemical language model designed with the intention of learning a model trained on small molecules which are represented as SMILES strings. MoLFormer leverges Masked Language Modeling and employs a linear attention Transformer combined with rotary embeddings.

MoLFormer

An overview of the MoLFormer pipeline is seen in the image above. One can see that the transformer based neural network model is trained on a large collection of chemical molecules represented by SMILES sequences from two public chemical datasets PubChem and Zinc in a self-supervised fashion. The MOLFORMER architecture was designed with an efficient linear attention mechanism and relative positional embeddings with the goal of learning a meaningful and compressed representation of chemical molecules. After training the MOLFORMER foundation model was then adopted to different downstream molecular property prediction tasks via fine-tuning on task-specific data. To further test the representative power of MOLFORMER the MOLFORMER encodings were used to recover molecular similarity, and analysis on the correspondence between the interatomic spatial distance and attention value for a given molecule was performed.

  1. Getting Started
    1. Pretrained Models and training logs
    2. Replicating Conda Environment
  2. Data
    1. PreTraining Datasets
    2. Finetuning Datasets
  3. PreTraining
  4. FineTuning
  5. Attention Visualization Analysis
  6. Citations

Getting Started

This Code and Environment have been tested on Nvidia V100s

Pretrained Models and training logs

If Training from scratch the resulting Pretrained models and associated training logs will be located in the /data directory in the following hierarchy.

data/
├── checkpoints
|   └── linear_model.ckpt
|   └── full_model.ckpt
├── Full_Attention_Rotary_Training_Logs
│   ├── events.out.tfevents.1628698179.cccxc544.604661.0
│   └── hparams.yaml
└── Linear_Rotary_Training_Logs
    ├── events.out.tfevents.1620915522.cccxc406.63025.0
    └── hparams.yaml

We are providing checkpoints of a MoLFormer model pre-trained on a dataset of ~100M molecules. This dataset combines 10% of Zinc and 10% of PubChem molecules used for MoLFormer-XL training. The accompanying pre-trained model shows competitive performance on classification and regression benchmarks from MoleculeNet. (see Extended data Tables 1-2 in https://arxiv.org/abs/2106.09553). These checkpoints are available at (https://ibm.box.com/v/MoLFormer-data](https://ibm.box.com/v/MoLFormer-data)

Replicating Conda Environment

Due to the use of apex.optimizers in our code, Apex must be compiled from source. Step-by-step directions are provided in environment.md

Data

Datasets are available at https://ibm.box.com/v/MoLFormer-data

PreTraining Datasets

Due to the large nature of the combination of the PubChem and Zinc (over 1.1 billion molecules in total) datasets the code expects the data to be in a certain location and format. The details of the of this processing is documented below for each individaul dataset.

The code expects both the zinc15(ZINC) and pubchem datasets to be located in ./data/ directory of the training diretory.

  • Zinc15 itself should be in located data/ZINC/ and is expected to be processed in multiple smi files which contains one smiles string per line.
  • PubChem should be located in data/pubchem/ and is expected to be processed as a single “CID-SMILES” text file with 2 columns (index and smiles string). We took the raw Pubchem dataset and converted every smiles molecule into the canonical form, utilizing rdkit, as well as trimmed down the file itself. Our dataloader expects Pubchem to be in our converted form and will not run on the raw pubchem file.
data/
├── pubchem
│   └── CID-SMILES-CANONICAL.smi
└── ZINC
    ├── AAAA.smi
    ├── AAAB.smi
    ├── AAAC.smi
    ├── AAAD.smi
    ├── AABA.smi
    ├── AABB.smi
    ├── AABD.smi
    ├── AACA.smi
    ├── AACB.smi
    ├── AAEA.smi
    ├── AAEB.smi
    ├── AAED.smi
    ├── ABAA.smi
    ├── ABAB.smi
    ├── ABAC.smi
    ├── ABAD.smi
    ├── ABBA.smi
    ├── ABBB.smi
    ├── ABBD.smi
    ├── ABCA.smi
    ├── ABCB.smi
    ├── ABCD.smi
    ├── ABEA.smi
    ├── ABEB.smi
    ├── ABEC.smi
    ├── ABED.smi
    ├── ACAA.smi
    ├── ACAB.smi

Finetuning Datasets

Just as with the pretraining data the code expects the finetuning datasets to be in the following hierarchy. These datasets were provided in the finetune_datasets.zip

data/
├── bace
│   ├── test.csv
│   ├── train.csv
│   └── valid.csv
├── bbbp
│   ├── test.csv
│   ├── train.csv
│   └── valid.csv
├── clintox
│   ├── test.csv
│   ├── train.csv
│   └── valid.csv
├── esol
│   ├── test.csv
│   ├── train.csv
│   └── valid.csv
├── freesolv
│   ├── test.csv
│   ├── train.csv
│   └── valid.csv
├── hiv
│   ├── test.csv
│   ├── train.csv
│   └── valid.csv
├── lipo
│   ├── lipo_test.csv
│   ├── lipo_train.csv
│   └── lipo_valid.csv
├── qm9
│   ├── qm9.csv
│   ├── qm9_test.csv
│   ├── qm9_train.csv
│   └── qm9_valid.csv
├── sider
│   ├── test.csv
│   ├── train.csv
│   └── valid.csv
└── tox21
    ├── test.csv
    ├── tox21.csv
    ├── train.csv
    └── valid.csv

Pretraining

For pre-training we use the masked language model method to train the model from scratch.

MoLFormer is pre-trained on canonicalized SMILES of >1 B molecules from ZINC and PubChem with the following constraints:

During pre-processing, the compounds are filtered to keep a maximum length of 211 characters. A 100/0/0 split was used for training, validation, and test, i.e. we used all the data for training the model. As a confidence test we would evaluate the model at the end of each epoch on the following data (find the data we used for eval). Data canonicalization was performed using RDKit.

The pre-training code provides an example of data processing and training of a model trained on a smaller pre-training dataset size, which requires 16 v100 GPUs. The remainder of this README contains an installation guide for this repo, descriptions and links to pre-training and fine-tuning datasets, configuration files and python codes for model pre-training and fine-tuning, and jupyter notebook for attention map visualization and analysis for a given molecule. A MoLFormer instance pre-trained on xxx data is also provided.

To train a model run:

bash run_pubchem_light.sh

Finetuning

The finetuning related dataset and environment can be found in finetuning datasets and environment.md respectively. Once you have the environment set up, you can run a fine-tune task by running

bash run_finetune_mu.sh

Finetuning training/checkpointing resources will be available in the diretory named checkpoint_<measure_name>. The path to the results csv will be in the form of ./checkpoint_<measure_name>/<measure_name>/results/results_.csv The results_.csv file contains 4 columns of data. Column one contains the validation score for each epoch while column 2 contains the test score for each epoch. Column 3 contains the best validation score observed up to that point of fine tuning while column 4 is the test score of the epoch which had the best validation score.

Attention Visualization Analysis

The notebooks directory provide attention visualization for two setup with Rotary Embeddings:

  • Linear attention (./notebooks/full_attention_rotary/attention_analysis_rotary_full.ipynb)
  • Full attention (./notebooks/linear_attention_rotary/attention_analysis_rotary_linear.ipynb)

The checkpoints required for the above models are to be placed in ./data/checkpoints

Citations

@article{10.1038/s42256-022-00580-7, 
year = {2022}, 
title = {{Large-scale chemical language representations capture molecular structure and properties}}, 
author = {Ross, Jerret and Belgodere, Brian and Chenthamarakshan, Vijil and Padhi, Inkit and Mroueh, Youssef and Das, Payel}, 
journal = {Nature Machine Intelligence}, 
doi = {10.1038/s42256-022-00580-7}, 
abstract = {{Models based on machine learning can enable accurate and fast molecular property predictions, which is of interest in drug discovery and material design. Various supervised machine learning models have demonstrated promising performance, but the vast chemical space and the limited availability of property labels make supervised learning challenging. Recently, unsupervised transformer-based language models pretrained on a large unlabelled corpus have produced state-of-the-art results in many downstream natural language processing tasks. Inspired by this development, we present molecular embeddings obtained by training an efficient transformer encoder model, MoLFormer, which uses rotary positional embeddings. This model employs a linear attention mechanism, coupled with highly distributed training, on SMILES sequences of 1.1 billion unlabelled molecules from the PubChem and ZINC datasets. We show that the learned molecular representation outperforms existing baselines, including supervised and self-supervised graph neural networks and language models, on several downstream tasks from ten benchmark datasets. They perform competitively on two others. Further analyses, specifically through the lens of attention, demonstrate that MoLFormer trained on chemical SMILES indeed learns the spatial relationships between atoms within a molecule. These results provide encouraging evidence that large-scale molecular language models can capture sufficient chemical and structural information to predict various distinct molecular properties, including quantum-chemical properties. Large language models have recently emerged with extraordinary capabilities, and these methods can be applied to model other kinds of sequence, such as string representations of molecules. Ross and colleagues have created a transformer-based model, trained on a large dataset of molecules, which provides good results on property prediction tasks.}}, 
pages = {1256--1264}, 
number = {12}, 
volume = {4}
}
@misc{https://doi.org/10.48550/arxiv.2106.09553,
  doi = {10.48550/ARXIV.2106.09553},
  url = {https://arxiv.org/abs/2106.09553},
  author = {Ross, Jerret and Belgodere, Brian and Chenthamarakshan, Vijil and Padhi, Inkit and Mroueh, Youssef and Das, Payel},
  keywords = {Machine Learning (cs.LG), Computation and Language (cs.CL), Biomolecules (q-bio.BM), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Biological sciences, FOS: Biological sciences},
  title = {Large-Scale Chemical Language Representations Capture Molecular Structure and Properties},
  publisher = {arXiv},
  year = {2021},
  copyright = {arXiv.org perpetual, non-exclusive license}
}

More Repositories

1

sarama

Sarama is a Go library for Apache Kafka.
Go
11,359
star
2

plex

The package of IBM’s typeface, IBM Plex.
CSS
9,603
star
3

css-gridish

Automatically build your grid design’s CSS Grid code, CSS Flexbox fallback code, Sketch artboards, and Chrome extension.
CSS
2,253
star
4

openapi-to-graphql

Translate APIs described by OpenAPI Specifications (OAS) into GraphQL
TypeScript
1,609
star
5

fp-go

functional programming library for golang
Go
1,550
star
6

Project_CodeNet

This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX
Python
1,537
star
7

fhe-toolkit-linux

IBM Fully Homomorphic Encryption Toolkit For Linux. This toolkit is a Linux based Docker container that demonstrates computing on encrypted data without decrypting it! The toolkit ships with two demos including a fully encrypted Machine Learning inference with a Neural Network and a Privacy-Preserving key-value search.
C++
1,436
star
8

pytorch-seq2seq

An open source framework for seq2seq models in PyTorch.
Python
1,431
star
9

ibm.github.io

IBM Open Source at GitHub
JavaScript
1,106
star
10

Dromedary

Dromedary: towards helpful, ethical and reliable LLMs.
Python
1,104
star
11

MicroscoPy

An open-source, motorized, and modular microscope built using LEGO bricks, Arduino, Raspberry Pi and 3D printing.
Python
1,102
star
12

MAX-Image-Resolution-Enhancer

Upscale an image by a factor of 4, while generating photo-realistic details.
Python
863
star
13

differential-privacy-library

Diffprivlib: The IBM Differential Privacy Library
Python
819
star
14

elasticsearch-spark-recommender

Use Jupyter Notebooks to demonstrate how to build a Recommender with Apache Spark & Elasticsearch
Jupyter Notebook
806
star
15

build-blockchain-insurance-app

Sample insurance application using Hyperledger Fabric
JavaScript
719
star
16

FfDL

Fabric for Deep Learning (FfDL, pronounced fiddle) is a Deep Learning Platform offering TensorFlow, Caffe, PyTorch etc. as a Service on Kubernetes
Go
676
star
17

spring-boot-microservices-on-kubernetes

In this code we demonstrate how a simple Spring Boot application can be deployed on top of Kubernetes. This application, Office Space, mimicks the fictitious app idea from Michael Bolton in the movie "Office Space".
JavaScript
548
star
18

cloud-native-starter

Cloud Native Starter for Java/Jakarta EE based Microservices on Kubernetes and Istio
Shell
516
star
19

openapi-validator

Configurable and extensible validator/linter for OpenAPI documents
JavaScript
496
star
20

federated-learning-lib

A library for federated learning (a distributed machine learning process) in an enterprise environment.
Python
495
star
21

clai

Command Line Artificial Intelligence or CLAI is an open-sourced project from IBM Research aimed to bring the power of AI to the command line interface.
Python
476
star
22

nicedoc.io

pretty README as service.
JavaScript
473
star
23

import-tracker

Python utility for tracking third party dependencies within a library
Python
457
star
24

mac-ibm-enrollment-app

The Mac@IBM enrollment app makes setting up macOS with Jamf Pro more intuitive for users and easier for IT. The application offers IT admins the ability to gather additional information about their users during setup, allows users to customize their enrollment by selecting apps or bundles of apps to install during setup, and provides users with next steps when enrollment is complete.
Swift
455
star
25

mobx-react-router

Keep your MobX state in sync with react-router
JavaScript
440
star
26

EvolveGCN

Code for EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs
Python
384
star
27

fhe-toolkit-macos

IBM Homomorphic Encryption Toolkit For MacOS
C++
358
star
28

AutoMLPipeline.jl

A package that makes it trivial to create and evaluate machine learning pipeline architectures.
HTML
355
star
29

aihwkit

IBM Analog Hardware Acceleration Kit
Jupyter Notebook
352
star
30

graphql-query-generator

Randomly generates GraphQL queries from a GraphQL schema
TypeScript
337
star
31

zshot

Zero and Few shot named entity & relationships recognition
Python
336
star
32

lale

Library for Semi-Automated Data Science
Python
333
star
33

portieris

A Kubernetes Admission Controller for verifying image trust.
Go
330
star
34

FedMA

Code for Federated Learning with Matched Averaging, ICLR 2020.
Python
326
star
35

BluePic

WARNING: This repository is no longer maintained ⚠️ This repository will not be updated. The repository will be kept available in read-only mode.
Swift
325
star
36

evote

A voting application that leverages Hyperledger Fabric and the IBM Blockchain Platform to record and tally ballots.
JavaScript
320
star
37

TabFormer

Code & Data for "Tabular Transformers for Modeling Multivariate Time Series" (ICASSP, 2021)
Python
319
star
38

powerai-counting-cars

Run a Jupyter Notebook to detect, track, and count cars in a video using Maximo Visual Insights (formerly PowerAI Vision) and OpenCV
Jupyter Notebook
317
star
39

blockchain-network-on-kubernetes

Demonstrates the steps involved in setting up your business network on Hyperledger Fabric using Kubernetes APIs on IBM Cloud Kubernetes Service.
Shell
305
star
40

charts

The IBM/charts repository provides helm charts for IBM and Third Party middleware.
Smarty
297
star
41

IBM-Z-zOS

The helpful and handy location for finding and sharing z/OS files, which are not included in the product.
REXX
296
star
42

mac-ibm-notifications

macOS agent used to display custom notifications and alerts to the end user.
Swift
294
star
43

blockchain-application-using-fabric-java-sdk

Create and Deploy a Blockchain Network using Hyperledger Fabric SDK Java
Java
290
star
44

MAX-Object-Detector

Localize and identify multiple objects in a single image.
Python
286
star
45

design-kit

The IBM Design kit is a collection of tools aimed to help you design and prototype experiences faster, with confidence and thoughtfulness. This kit is based on the IBM Design System. Also, you may use this documentation to create add-on libraries to the IBM Design System or submit bugs to the current system.
272
star
46

AccDNN

A compiler from AI model to RTL (Verilog) accelerator in FPGA hardware with auto design space exploration.
Verilog
270
star
47

deploy-ibm-cloud-private

Instructions and Code required to install IBM Cloud Private
HCL
263
star
48

audit-ci

Audit NPM, Yarn, PNPM, and Bun dependencies in continuous integration environments, preventing integration if vulnerabilities are found at or above a configurable threshold while ignoring allowlisted advisories
TypeScript
261
star
49

vue-a11y-calendar

Accessible, internationalized Vue calendar
JavaScript
253
star
50

UQ360

Uncertainty Quantification 360 (UQ360) is an extensible open-source toolkit that can help you estimate, communicate and use uncertainty in machine learning model predictions.
Python
252
star
51

watson-banking-chatbot

A chatbot for banking that uses the Watson Assistant, Discovery, Natural Language Understanding and Tone Analyzer services.
JavaScript
250
star
52

ibm-generative-ai

IBM-Generative-AI is a Python library built on IBM's large language model REST interface to seamlessly integrate and extend this service in Python programs.
Python
246
star
53

Kubernetes-container-service-GitLab-sample

This code shows how a common multi-component GitLab can be deployed on Kubernetes cluster. Each component (NGINX, Ruby on Rails, Redis, PostgreSQL, and more) runs in a separate container or group of containers.
Shell
243
star
54

transition-amr-parser

SoTA Abstract Meaning Representation (AMR) parsing with word-node alignments in Pytorch. Includes checkpoints and other tools such as statistical significance Smatch.
Python
241
star
55

tensorflow-hangul-recognition

Handwritten Korean Character Recognition with TensorFlow and Android
Python
232
star
56

BlockchainNetwork-CompositeJourney

Part 1 in a series of patterns showing the building blocks of a Blockchain application
Shell
227
star
57

LNN

A `Neural = Symbolic` framework for sound and complete weighted real-value logic
Python
225
star
58

pytorchpipe

PyTorchPipe (PTP) is a component-oriented framework for rapid prototyping and training of computational pipelines combining vision and language
Python
223
star
59

Graph2Seq

Graph2Seq is a simple code for building a graph-encoder and sequence-decoder for NLP and other AI/ML/DL tasks.
Python
219
star
60

ModuleFormer

ModuleFormer is a MoE-based architecture that includes two different types of experts: stick-breaking attention heads and feedforward experts. We released a collection of ModuleFormer-based Language Models (MoLM) ranging in scale from 4 billion to 8 billion parameters.
Python
219
star
61

data-prep-kit

Open source project for data preparation of LLM application builders
Jupyter Notebook
217
star
62

Scalable-WordPress-deployment-on-Kubernetes

This code showcases the full power of Kubernetes clusters and shows how can we deploy the world's most popular website framework on top of world's most popular container orchestration platform.
Shell
214
star
63

janusgraph-utils

Develop a graph database app using JanusGraph
Java
207
star
64

tensorflow-large-model-support

Large Model Support in Tensorflow
201
star
65

Scalable-Cassandra-deployment-on-Kubernetes

In this code we provide a full roadmap the deployment of a multi-node scalable Cassandra cluster on Kubernetes. Cassandra understands that it is running within a cluster manager, and uses this cluster management infrastructure to help implement the application. Kubernetes concepts like Replication Controller, StatefulSets etc. are leveraged to deploy either non-persistent or persistent Cassandra clusters on Kubernetes cluster.
Shell
195
star
66

adaptive-federated-learning

Code for paper "Adaptive Federated Learning in Resource Constrained Edge Computing Systems"
Python
193
star
67

action-recognition-pytorch

This is the pytorch implementation of some representative action recognition approaches including I3D, S3D, TSN and TAM.
Python
193
star
68

gantt-chart

IBM Gantt Chart Component, integrable in Vanilla, jQuery, or React Framework.
JavaScript
193
star
69

api-samples

Samples code that uses QRadar API's
Python
192
star
70

cdfsl-benchmark

(ECCV 2020) Cross-Domain Few-Shot Learning Benchmarking System
Python
190
star
71

kube101

Kubernetes 101 workshop (https://ibm.github.io/kube101/)
Shell
181
star
72

CrossViT

Official implementation of CrossViT. https://arxiv.org/abs/2103.14899
Python
180
star
73

rl-testbed-for-energyplus

Reinforcement Learning Testbed for Power Consumption Optimization using EnergyPlus
Python
180
star
74

browser-functions

A lightweight serverless platform that uses Web Browsers as execution engines
JavaScript
180
star
75

pwa-lit-template

A template for building Progressive Web Applications using Lit and Vaadin Router.
TypeScript
178
star
76

fastfit

FastFit ⚡ When LLMs are Unfit Use FastFit ⚡ Fast and Effective Text Classification with Many Classes
Python
174
star
77

AMLSim

The AMLSim project is intended to provide a multi-agent based simulator that generates synthetic banking transaction data together with a set of known money laundering patterns - mainly for the purpose of testing machine learning models and graph algorithms. We welcome you to enhance this effort since the data set related to money laundering is critical to advance detection capabilities of money laundering activities.
Python
170
star
78

socket-io

A Socket.IO client for C#
C#
169
star
79

tfjs-web-app

A TensorFlow.js Progressive Web App for Offline Visual Recognition
JavaScript
164
star
80

spark-tpc-ds-performance-test

Use the TPC-DS benchmark to test Spark SQL performance
TSQL
160
star
81

simulai

A toolkit with data-driven pipelines for physics-informed machine learning.
Python
157
star
82

watson-online-store

Learn how to use Watson Assistant and Watson Discovery. This application demonstrates a simple abstraction of a chatbot interacting with a Cloudant NoSQL database, using a Slack UI.
HTML
156
star
83

unitxt

🦄 Unitxt: a python library for getting data fired up and set for training and evaluation
Python
155
star
84

istio101

Istio 101 workshop (https://ibm.github.io/istio101/)
Shell
154
star
85

Medical-Blockchain

A healthcare data management platform built on blockchain that stores medical data off-chain
Vue
150
star
86

terratorch

a Python toolkit for fine-tuning Geospatial Foundation Models (GFMs).
Python
148
star
87

node-odbc

ODBC bindings for node
JavaScript
146
star
88

taxinomitis

Source code for Machine Learning for Kids site
JavaScript
143
star
89

watson-assistant-slots-intro

A Chatbot for ordering a pizza that demonstrates how using the IBM Watson Assistant Slots feature, one can fill out an order, form, or profile.
JavaScript
143
star
90

tsfm

Foundation Models for Time Series
Jupyter Notebook
143
star
91

SALMON

Self-Alignment with Principle-Following Reward Models
Python
142
star
92

ipfs-social-proof

IPFS Social Proof: A decentralized identity and social proof system
JavaScript
142
star
93

kgi-slot-filling

This is the code for our KILT leaderboard submissions (KGI + Re2G models).
Python
141
star
94

etcd-java

Alternative etcd3 java client
Java
141
star
95

regression-transformer

Regression Transformer (2023; Nature Machine Intelligence)
Python
140
star
96

deploy-react-kubernetes

Built for developers who are interested in learning how to deploy a React application on Kubernetes, this pattern uses the React and Redux framework and calls the OMDb API to look up movie information based on user input. This pattern can be built and run on both Docker and Kubernetes.
JavaScript
139
star
97

probabilistic-federated-neural-matching

Bayesian Nonparametric Federated Learning of Neural Networks
Python
137
star
98

innovate-digital-bank

This repository contains instructions to build a digital bank composed of a set of microservices that communicate with each other. Using Nodejs, Express, MongoDB and deployed to a Kubernetes cluster on IBM Cloud.
JavaScript
137
star
99

core-dump-handler

Save core dumps from a Kubernetes Service or RedHat OpenShift to an S3 protocol compatible object store
Rust
136
star
100

KubeflowDojo

Repository to hold code, instructions, demos and pointers to presentation assets for Kubeflow Dojo
Jupyter Notebook
133
star