• This repository has been archived on 22/Jul/2024
  • Stars
    star
    201
  • Rank 194,491 (Top 4 %)
  • Language
  • License
    Apache License 2.0
  • Created about 6 years ago
  • Updated about 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Large Model Support in Tensorflow

TensorFlow Large Model Support

TensorFlow Large Model Support (TFLMS) is a feature in the TensorFlow provided by IBM Watson Machine Learning Community Edition (WML CE) that allows the successful training of deep learning models that would otherwise exhaust GPU memory and abort with "out-of-memory" errors. LMS manages this oversubscription of GPU memory by temporarily swapping tensors to host memory when they are not needed.

One or more elements of a deep learning model can lead to GPU memory exhaustion.

These include:

  • Model depth and complexity
  • Base data size (for example, high-resolution images)
  • Batch size

Traditionally, the solution to this problem has been to modify the model until it fits in GPU memory. This approach, however, can negatively impact accuracy – especially if concessions are made by reducing data fidelity or model complexity.

With LMS, deep learning models can scale significantly beyond what was previously possible and, ultimately, generate more accurate results.

Installing TensorFlow Large Model Support

TFLMS is built into the tensorflow-gpu conda package so it is installed by default when you install the GPU enabled TensorFlow from WML CE.

The support is currently available for TensorFlow 2.2.0 in the WML CE early access conda channel.

The support is currently available for TensorFlow 2.1.0 in the WML CE conda channel.

For more information on this channel, how to add channels, and install frameworks see this WML CE install documentation.

How to enable TFLMS

The TFLMS functionality is disabled by default in TensorFlow and needs to be enabled before your model creates tensors. In most cases, enabling TFLMS is as simple as calling the enablement API at the start of your program:

import tensorflow as tf
tf.config.experimental.set_lms_enabled(True)

In TensorFlow 2 some models use sessions and session configurations are created either explicitly in model code or implicitly within TensorFlow APIs.

Using TensorFlow Estimators

TensorFlow Estimators use sessions for training and will implicitly create a default session configuration if one is not specified. To enable TFLMS the ConfigProto settings need to be updated with the LMS setting.

# Create a session config if necessary, or add to the existing session config
session_config = tf.compat.v1.ConfigProto(allow_soft_placement=True)
session_config.gpu_options.experimental.lms_enabled = True

# Create a run config if necessary, or add the session_config to the existing
# run config.
run_config = tf.estimator.RunConfig(# ... other RunConfig parameters,
                                    session_config=session_config)
# Pass the RunConfig to the Estimator
estimator = tf.estimator.Estimator( # .. other Estimator parameters,
                                   config=run_config)

TensorFlow Keras directly setting session

If a TensorFlow Keras model is used in with v1 compatibility mode in TensorFlow 2, and TensorFlow 2 behavior is disabled using:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

then the Session configuration must be set to enable LMS.

session_config = tf.compat.v1.ConfigProto(allow_soft_placement=True)
session_config.gpu_options.experimental.lms_enabled = True
sess = tf.Session(config=session_config)
tf.keras.backend.set_session(sess)

TensorFlow 1.x models using Sessions

If a standard sessions-based TensorFlow 1.x model is used with v1 compatibility mode in TensorFlow 2 using:

import tensorflow.compat.v1 as tf

then the Session configuration must be set to enable LMS.

session_config = tf.compat.v1.ConfigProto(allow_soft_placement=True)
session_config.gpu_options.experimental.lms_enabled = True
sess = tf.Session(config=session_config)

Examples

The ManyModel.py example, found in the TensorFlow LMS examples, uses synthetic random images with multiple models provided by TensorFlow Keras applications to allow users a fast hands-on experience with LMS. The example allows users to change the image size, explore auto-tuning, and manually set the LMS tunable parameters on many variants of the ResNet, DenseNet, MobileNet, Inception, NASNet, and Xception models. Advanced users can also use the command line parameters to enable CUDA profiling that can be used with the NVIDIA Visual Profiler to profile and visualize the tensor swapping.

Usage tips

Increase the system memory (GPU host) memory allocation

TensorFlow sets a limit on the amount of memory that will be allocated on the GPU host (CPU) side. The limit is often not high enough to act as a tensor swap space when swapping a large amount of data or when using multiple GPUs without the use of Horovod. The limit can be adjusted by setting the TF_GPU_HOST_MEM_LIMIT_IN_MB environment variable. Failure to set this limit higher will result in out of memory errors such as: Allocator (gpu_host_bfc) ran out of memory trying to allocate. Note the gpu_host_bfc allocator is mentioned rather than a GPU allocator.

The value for TF_GPU_HOST_MEM_LIMIT_IN_MB should be several times the size of the memory of the GPUs being used by the TensorFlow process. For example, if a single 32GB GPU is being used then the TF_GPU_HOST_MEM_LIMIT_IN_MB should be set several times greater than 32GB.

If Horovod distribution is being used, it will create one process per GPU. In this the TF_GPU_HOST_MEM_LIMIT_IN_MB limit should be set several times greater than the memory of one of the GPUs.

If other GPU distrubtion mechanisms are used, then the TF_GPU_HOST_MEM_LIMIT_IN_MB limit should be set to several times the sum of the memory of all the GPUs being used.

Use NUMA pinning for single GPU use

If you are utilizing a single GPU it is recommended to use NUMA pinning to pin the process to the CPU and memory that is on the same system socket as the GPU being used. Pinning the process allows the fastest connection paths between system memory and GPU memory, which reduces the training or inferencing time. WML CE includes the numactl utility that can be used to do this pinning. It can be installed with the conda install numactl command. The following example shows how to specify a single GPU to be used and how to pin the process to use the CPU cores and memory that are on the same socket as the specified GPU:

export CUDA_VISIBLE_DEVICES=0
numactl --cpunodebind=0 --membind=0 python train.py

Use Horovod when using more than one GPU

It is recommended to use Horovod distribution when using more than one GPU because Horovod creates a separate process per GPU and automatically sets the process have socket affinity with the GPU which allows the fastest connection paths between system memory and GPU memory, which reduces the training or inferencing time.

Model memory usage analysis with allocator statistics

TFLMS adds several APIs to obtain GPU memory allocator statistics such as the number of allocations, the peak memory usage, the amount of memory swapped, and more. For more information on the statistics APIs and examples of their usage see the TensorFlow LMS examples.

Building TensorFlow from source with TensorFlow Large Model Support

The patches directory contains git patch of for the TFLMS code. The file names correspond to tag levels in the TensorFlow source. To build TensorFlow from source with TensorFlow Large Model Support, check out the specific TensorFlow git tag and then apply the corresponding TensorFlow Large Model Support patch file.

For example:

git clone https://github.com/tensorflow/tensorflow
cd tensorflow
git pull --tags
git checkout v2.1.0
git am /tensorflow-large-model-support/patches/tensorflow_v2.1.0_large_model_support.patch

Contribution guidelines

If you want to contribute to TensorFlow Large Model Support please read the contribution guidelines.

Previous implementations of TensorFlow Large Model Support

TFLMSv1

The TFLMSv1 implementation was installed as a separate module from TensorFlow and performed static graph modifications on the model's graph to introduce swapping nodes. This implementation was included in the tensorflow.contrib module path as a technology preview in IBM PowerAI 1.5.4 and earlier releases. The implementation source resides in the tflmsv1 branch of this repository.

TFLMSv2

The TFLMSv2 implementation was installed as a separate conda module from TensorFlow and performed static graph modifications on the model's graph to introduce swapping nodes and other graph optimizations. This implementation was included in IBM Watson Machine Learning Community Edition 1.6.x versions. The implementation source resides in the tflmsv2 branch of this repository.

More Repositories

1

sarama

Sarama is a Go library for Apache Kafka.
Go
11,359
star
2

plex

The package of IBM’s typeface, IBM Plex.
CSS
9,603
star
3

css-gridish

Automatically build your grid design’s CSS Grid code, CSS Flexbox fallback code, Sketch artboards, and Chrome extension.
CSS
2,253
star
4

openapi-to-graphql

Translate APIs described by OpenAPI Specifications (OAS) into GraphQL
TypeScript
1,609
star
5

fp-go

functional programming library for golang
Go
1,550
star
6

Project_CodeNet

This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX
Python
1,537
star
7

fhe-toolkit-linux

IBM Fully Homomorphic Encryption Toolkit For Linux. This toolkit is a Linux based Docker container that demonstrates computing on encrypted data without decrypting it! The toolkit ships with two demos including a fully encrypted Machine Learning inference with a Neural Network and a Privacy-Preserving key-value search.
C++
1,436
star
8

pytorch-seq2seq

An open source framework for seq2seq models in PyTorch.
Python
1,431
star
9

ibm.github.io

IBM Open Source at GitHub
JavaScript
1,106
star
10

Dromedary

Dromedary: towards helpful, ethical and reliable LLMs.
Python
1,104
star
11

MicroscoPy

An open-source, motorized, and modular microscope built using LEGO bricks, Arduino, Raspberry Pi and 3D printing.
Python
1,102
star
12

MAX-Image-Resolution-Enhancer

Upscale an image by a factor of 4, while generating photo-realistic details.
Python
863
star
13

differential-privacy-library

Diffprivlib: The IBM Differential Privacy Library
Python
819
star
14

elasticsearch-spark-recommender

Use Jupyter Notebooks to demonstrate how to build a Recommender with Apache Spark & Elasticsearch
Jupyter Notebook
806
star
15

build-blockchain-insurance-app

Sample insurance application using Hyperledger Fabric
JavaScript
719
star
16

FfDL

Fabric for Deep Learning (FfDL, pronounced fiddle) is a Deep Learning Platform offering TensorFlow, Caffe, PyTorch etc. as a Service on Kubernetes
Go
676
star
17

spring-boot-microservices-on-kubernetes

In this code we demonstrate how a simple Spring Boot application can be deployed on top of Kubernetes. This application, Office Space, mimicks the fictitious app idea from Michael Bolton in the movie "Office Space".
JavaScript
548
star
18

cloud-native-starter

Cloud Native Starter for Java/Jakarta EE based Microservices on Kubernetes and Istio
Shell
516
star
19

openapi-validator

Configurable and extensible validator/linter for OpenAPI documents
JavaScript
496
star
20

federated-learning-lib

A library for federated learning (a distributed machine learning process) in an enterprise environment.
Python
495
star
21

clai

Command Line Artificial Intelligence or CLAI is an open-sourced project from IBM Research aimed to bring the power of AI to the command line interface.
Python
476
star
22

nicedoc.io

pretty README as service.
JavaScript
473
star
23

import-tracker

Python utility for tracking third party dependencies within a library
Python
457
star
24

mac-ibm-enrollment-app

The Mac@IBM enrollment app makes setting up macOS with Jamf Pro more intuitive for users and easier for IT. The application offers IT admins the ability to gather additional information about their users during setup, allows users to customize their enrollment by selecting apps or bundles of apps to install during setup, and provides users with next steps when enrollment is complete.
Swift
455
star
25

mobx-react-router

Keep your MobX state in sync with react-router
JavaScript
440
star
26

EvolveGCN

Code for EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs
Python
384
star
27

fhe-toolkit-macos

IBM Homomorphic Encryption Toolkit For MacOS
C++
358
star
28

AutoMLPipeline.jl

A package that makes it trivial to create and evaluate machine learning pipeline architectures.
HTML
355
star
29

aihwkit

IBM Analog Hardware Acceleration Kit
Jupyter Notebook
352
star
30

graphql-query-generator

Randomly generates GraphQL queries from a GraphQL schema
TypeScript
337
star
31

zshot

Zero and Few shot named entity & relationships recognition
Python
336
star
32

lale

Library for Semi-Automated Data Science
Python
333
star
33

portieris

A Kubernetes Admission Controller for verifying image trust.
Go
330
star
34

FedMA

Code for Federated Learning with Matched Averaging, ICLR 2020.
Python
326
star
35

BluePic

WARNING: This repository is no longer maintained ⚠️ This repository will not be updated. The repository will be kept available in read-only mode.
Swift
325
star
36

evote

A voting application that leverages Hyperledger Fabric and the IBM Blockchain Platform to record and tally ballots.
JavaScript
320
star
37

TabFormer

Code & Data for "Tabular Transformers for Modeling Multivariate Time Series" (ICASSP, 2021)
Python
319
star
38

powerai-counting-cars

Run a Jupyter Notebook to detect, track, and count cars in a video using Maximo Visual Insights (formerly PowerAI Vision) and OpenCV
Jupyter Notebook
317
star
39

blockchain-network-on-kubernetes

Demonstrates the steps involved in setting up your business network on Hyperledger Fabric using Kubernetes APIs on IBM Cloud Kubernetes Service.
Shell
305
star
40

charts

The IBM/charts repository provides helm charts for IBM and Third Party middleware.
Smarty
297
star
41

IBM-Z-zOS

The helpful and handy location for finding and sharing z/OS files, which are not included in the product.
REXX
296
star
42

mac-ibm-notifications

macOS agent used to display custom notifications and alerts to the end user.
Swift
294
star
43

blockchain-application-using-fabric-java-sdk

Create and Deploy a Blockchain Network using Hyperledger Fabric SDK Java
Java
290
star
44

MAX-Object-Detector

Localize and identify multiple objects in a single image.
Python
286
star
45

design-kit

The IBM Design kit is a collection of tools aimed to help you design and prototype experiences faster, with confidence and thoughtfulness. This kit is based on the IBM Design System. Also, you may use this documentation to create add-on libraries to the IBM Design System or submit bugs to the current system.
272
star
46

AccDNN

A compiler from AI model to RTL (Verilog) accelerator in FPGA hardware with auto design space exploration.
Verilog
270
star
47

deploy-ibm-cloud-private

Instructions and Code required to install IBM Cloud Private
HCL
263
star
48

audit-ci

Audit NPM, Yarn, PNPM, and Bun dependencies in continuous integration environments, preventing integration if vulnerabilities are found at or above a configurable threshold while ignoring allowlisted advisories
TypeScript
261
star
49

vue-a11y-calendar

Accessible, internationalized Vue calendar
JavaScript
253
star
50

UQ360

Uncertainty Quantification 360 (UQ360) is an extensible open-source toolkit that can help you estimate, communicate and use uncertainty in machine learning model predictions.
Python
252
star
51

watson-banking-chatbot

A chatbot for banking that uses the Watson Assistant, Discovery, Natural Language Understanding and Tone Analyzer services.
JavaScript
250
star
52

ibm-generative-ai

IBM-Generative-AI is a Python library built on IBM's large language model REST interface to seamlessly integrate and extend this service in Python programs.
Python
246
star
53

Kubernetes-container-service-GitLab-sample

This code shows how a common multi-component GitLab can be deployed on Kubernetes cluster. Each component (NGINX, Ruby on Rails, Redis, PostgreSQL, and more) runs in a separate container or group of containers.
Shell
243
star
54

transition-amr-parser

SoTA Abstract Meaning Representation (AMR) parsing with word-node alignments in Pytorch. Includes checkpoints and other tools such as statistical significance Smatch.
Python
241
star
55

tensorflow-hangul-recognition

Handwritten Korean Character Recognition with TensorFlow and Android
Python
232
star
56

molformer

Repository for MolFormer
Jupyter Notebook
228
star
57

BlockchainNetwork-CompositeJourney

Part 1 in a series of patterns showing the building blocks of a Blockchain application
Shell
227
star
58

LNN

A `Neural = Symbolic` framework for sound and complete weighted real-value logic
Python
225
star
59

pytorchpipe

PyTorchPipe (PTP) is a component-oriented framework for rapid prototyping and training of computational pipelines combining vision and language
Python
223
star
60

Graph2Seq

Graph2Seq is a simple code for building a graph-encoder and sequence-decoder for NLP and other AI/ML/DL tasks.
Python
219
star
61

ModuleFormer

ModuleFormer is a MoE-based architecture that includes two different types of experts: stick-breaking attention heads and feedforward experts. We released a collection of ModuleFormer-based Language Models (MoLM) ranging in scale from 4 billion to 8 billion parameters.
Python
219
star
62

data-prep-kit

Open source project for data preparation of LLM application builders
Jupyter Notebook
217
star
63

Scalable-WordPress-deployment-on-Kubernetes

This code showcases the full power of Kubernetes clusters and shows how can we deploy the world's most popular website framework on top of world's most popular container orchestration platform.
Shell
214
star
64

janusgraph-utils

Develop a graph database app using JanusGraph
Java
207
star
65

Scalable-Cassandra-deployment-on-Kubernetes

In this code we provide a full roadmap the deployment of a multi-node scalable Cassandra cluster on Kubernetes. Cassandra understands that it is running within a cluster manager, and uses this cluster management infrastructure to help implement the application. Kubernetes concepts like Replication Controller, StatefulSets etc. are leveraged to deploy either non-persistent or persistent Cassandra clusters on Kubernetes cluster.
Shell
195
star
66

adaptive-federated-learning

Code for paper "Adaptive Federated Learning in Resource Constrained Edge Computing Systems"
Python
193
star
67

action-recognition-pytorch

This is the pytorch implementation of some representative action recognition approaches including I3D, S3D, TSN and TAM.
Python
193
star
68

gantt-chart

IBM Gantt Chart Component, integrable in Vanilla, jQuery, or React Framework.
JavaScript
193
star
69

api-samples

Samples code that uses QRadar API's
Python
192
star
70

cdfsl-benchmark

(ECCV 2020) Cross-Domain Few-Shot Learning Benchmarking System
Python
190
star
71

kube101

Kubernetes 101 workshop (https://ibm.github.io/kube101/)
Shell
181
star
72

CrossViT

Official implementation of CrossViT. https://arxiv.org/abs/2103.14899
Python
180
star
73

rl-testbed-for-energyplus

Reinforcement Learning Testbed for Power Consumption Optimization using EnergyPlus
Python
180
star
74

browser-functions

A lightweight serverless platform that uses Web Browsers as execution engines
JavaScript
180
star
75

pwa-lit-template

A template for building Progressive Web Applications using Lit and Vaadin Router.
TypeScript
178
star
76

fastfit

FastFit ⚡ When LLMs are Unfit Use FastFit ⚡ Fast and Effective Text Classification with Many Classes
Python
174
star
77

AMLSim

The AMLSim project is intended to provide a multi-agent based simulator that generates synthetic banking transaction data together with a set of known money laundering patterns - mainly for the purpose of testing machine learning models and graph algorithms. We welcome you to enhance this effort since the data set related to money laundering is critical to advance detection capabilities of money laundering activities.
Python
170
star
78

socket-io

A Socket.IO client for C#
C#
169
star
79

tfjs-web-app

A TensorFlow.js Progressive Web App for Offline Visual Recognition
JavaScript
164
star
80

spark-tpc-ds-performance-test

Use the TPC-DS benchmark to test Spark SQL performance
TSQL
160
star
81

simulai

A toolkit with data-driven pipelines for physics-informed machine learning.
Python
157
star
82

watson-online-store

Learn how to use Watson Assistant and Watson Discovery. This application demonstrates a simple abstraction of a chatbot interacting with a Cloudant NoSQL database, using a Slack UI.
HTML
156
star
83

unitxt

🦄 Unitxt: a python library for getting data fired up and set for training and evaluation
Python
155
star
84

istio101

Istio 101 workshop (https://ibm.github.io/istio101/)
Shell
154
star
85

Medical-Blockchain

A healthcare data management platform built on blockchain that stores medical data off-chain
Vue
150
star
86

terratorch

a Python toolkit for fine-tuning Geospatial Foundation Models (GFMs).
Python
148
star
87

node-odbc

ODBC bindings for node
JavaScript
146
star
88

taxinomitis

Source code for Machine Learning for Kids site
JavaScript
143
star
89

watson-assistant-slots-intro

A Chatbot for ordering a pizza that demonstrates how using the IBM Watson Assistant Slots feature, one can fill out an order, form, or profile.
JavaScript
143
star
90

tsfm

Foundation Models for Time Series
Jupyter Notebook
143
star
91

SALMON

Self-Alignment with Principle-Following Reward Models
Python
142
star
92

ipfs-social-proof

IPFS Social Proof: A decentralized identity and social proof system
JavaScript
142
star
93

kgi-slot-filling

This is the code for our KILT leaderboard submissions (KGI + Re2G models).
Python
141
star
94

etcd-java

Alternative etcd3 java client
Java
141
star
95

regression-transformer

Regression Transformer (2023; Nature Machine Intelligence)
Python
140
star
96

deploy-react-kubernetes

Built for developers who are interested in learning how to deploy a React application on Kubernetes, this pattern uses the React and Redux framework and calls the OMDb API to look up movie information based on user input. This pattern can be built and run on both Docker and Kubernetes.
JavaScript
139
star
97

probabilistic-federated-neural-matching

Bayesian Nonparametric Federated Learning of Neural Networks
Python
137
star
98

innovate-digital-bank

This repository contains instructions to build a digital bank composed of a set of microservices that communicate with each other. Using Nodejs, Express, MongoDB and deployed to a Kubernetes cluster on IBM Cloud.
JavaScript
137
star
99

core-dump-handler

Save core dumps from a Kubernetes Service or RedHat OpenShift to an S3 protocol compatible object store
Rust
136
star
100

KubeflowDojo

Repository to hold code, instructions, demos and pointers to presentation assets for Kubeflow Dojo
Jupyter Notebook
133
star