• Stars
    star
    3,181
  • Rank 14,124 (Top 0.3 %)
  • Language
    C++
  • License
    GNU General Publi...
  • Created almost 6 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

An optimization-based multi-sensor state estimator

VINS-Fusion

An optimization-based multi-sensor state estimator

VINS-Fusion is an optimization-based multi-sensor state estimator, which achieves accurate self-localization for autonomous applications (drones, cars, and AR/VR). VINS-Fusion is an extension of VINS-Mono, which supports multiple visual-inertial sensor types (mono camera + IMU, stereo cameras + IMU, even stereo cameras only). We also show a toy example of fusing VINS with GPS. Features:

  • multiple sensors support (stereo cameras / mono camera+IMU / stereo cameras+IMU)
  • online spatial calibration (transformation between camera and IMU)
  • online temporal calibration (time offset between camera and IMU)
  • visual loop closure

We are the top open-sourced stereo algorithm on KITTI Odometry Benchmark (12.Jan.2019).

Authors: Tong Qin, Shaozu Cao, Jie Pan, Peiliang Li, and Shaojie Shen from the Aerial Robotics Group, HKUST

Videos:

VINS

Related Paper: (paper is not exactly same with code)

  • Online Temporal Calibration for Monocular Visual-Inertial Systems, Tong Qin, Shaojie Shen, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS, 2018), best student paper award pdf

  • VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator, Tong Qin, Peiliang Li, Shaojie Shen, IEEE Transactions on Robotics pdf

If you use VINS-Fusion for your academic research, please cite our related papers. bib

1. Prerequisites

1.1 Ubuntu and ROS

Ubuntu 64-bit 16.04 or 18.04. ROS Kinetic or Melodic. ROS Installation

1.2. Ceres Solver

Follow Ceres Installation.

2. Build VINS-Fusion

Clone the repository and catkin_make:

    cd ~/catkin_ws/src
    git clone https://github.com/HKUST-Aerial-Robotics/VINS-Fusion.git
    cd ../
    catkin_make
    source ~/catkin_ws/devel/setup.bash

(if you fail in this step, try to find another computer with clean system or reinstall Ubuntu and ROS)

3. EuRoC Example

Download EuRoC MAV Dataset to YOUR_DATASET_FOLDER. Take MH_01 for example, you can run VINS-Fusion with three sensor types (monocular camera + IMU, stereo cameras + IMU and stereo cameras). Open four terminals, run vins odometry, visual loop closure(optional), rviz and play the bag file respectively. Green path is VIO odometry; red path is odometry under visual loop closure.

3.1 Monocualr camera + IMU

    roslaunch vins vins_rviz.launch
    rosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_mono_imu_config.yaml 
    (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_mono_imu_config.yaml 
    rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag

3.2 Stereo cameras + IMU

    roslaunch vins vins_rviz.launch
    rosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_imu_config.yaml 
    (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_imu_config.yaml 
    rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag

3.3 Stereo cameras

    roslaunch vins vins_rviz.launch
    rosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_config.yaml 
    (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_stereo_config.yaml 
    rosbag play YOUR_DATASET_FOLDER/MH_01_easy.bag

4. KITTI Example

4.1 KITTI Odometry (Stereo)

Download KITTI Odometry dataset to YOUR_DATASET_FOLDER. Take sequences 00 for example, Open two terminals, run vins and rviz respectively. (We evaluated odometry on KITTI benchmark without loop closure funtion)

    roslaunch vins vins_rviz.launch
    (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/kitti_odom/kitti_config00-02.yaml
    rosrun vins kitti_odom_test ~/catkin_ws/src/VINS-Fusion/config/kitti_odom/kitti_config00-02.yaml YOUR_DATASET_FOLDER/sequences/00/ 

4.2 KITTI GPS Fusion (Stereo + GPS)

Download KITTI raw dataset to YOUR_DATASET_FOLDER. Take 2011_10_03_drive_0027_synced for example. Open three terminals, run vins, global fusion and rviz respectively. Green path is VIO odometry; blue path is odometry under GPS global fusion.

    roslaunch vins vins_rviz.launch
    rosrun vins kitti_gps_test ~/catkin_ws/src/VINS-Fusion/config/kitti_raw/kitti_10_03_config.yaml YOUR_DATASET_FOLDER/2011_10_03_drive_0027_sync/ 
    rosrun global_fusion global_fusion_node

5. VINS-Fusion on car demonstration

Download car bag to YOUR_DATASET_FOLDER. Open four terminals, run vins odometry, visual loop closure(optional), rviz and play the bag file respectively. Green path is VIO odometry; red path is odometry under visual loop closure.

    roslaunch vins vins_rviz.launch
    rosrun vins vins_node ~/catkin_ws/src/VINS-Fusion/config/vi_car/vi_car.yaml 
    (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/vi_car/vi_car.yaml 
    rosbag play YOUR_DATASET_FOLDER/car.bag

6. Run with your devices

VIO is not only a software algorithm, it heavily relies on hardware quality. For beginners, we recommend you to run VIO with professional equipment, which contains global shutter cameras and hardware synchronization.

6.1 Configuration file

Write a config file for your device. You can take config files of EuRoC and KITTI as the example.

6.2 Camera calibration

VINS-Fusion support several camera models (pinhole, mei, equidistant). You can use camera model to calibrate your cameras. We put some example data under /camera_models/calibrationdata to tell you how to calibrate.

cd ~/catkin_ws/src/VINS-Fusion/camera_models/camera_calib_example/
rosrun camera_models Calibrations -w 12 -h 8 -s 80 -i calibrationdata --camera-model pinhole

7. Docker Support

To further facilitate the building process, we add docker in our code. Docker environment is like a sandbox, thus makes our code environment-independent. To run with docker, first make sure ros and docker are installed on your machine. Then add your account to docker group by sudo usermod -aG docker $YOUR_USER_NAME. Relaunch the terminal or logout and re-login if you get Permission denied error, type:

cd ~/catkin_ws/src/VINS-Fusion/docker
make build

Note that the docker building process may take a while depends on your network and machine. After VINS-Fusion successfully built, you can run vins estimator with script run.sh. Script run.sh can take several flags and arguments. Flag -k means KITTI, -l represents loop fusion, and -g stands for global fusion. You can get the usage details by ./run.sh -h. Here are some examples with this script:

# Euroc Monocualr camera + IMU
./run.sh ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_mono_imu_config.yaml

# Euroc Stereo cameras + IMU with loop fusion
./run.sh -l ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_mono_imu_config.yaml

# KITTI Odometry (Stereo)
./run.sh -k ~/catkin_ws/src/VINS-Fusion/config/kitti_odom/kitti_config00-02.yaml YOUR_DATASET_FOLDER/sequences/00/

# KITTI Odometry (Stereo) with loop fusion
./run.sh -kl ~/catkin_ws/src/VINS-Fusion/config/kitti_odom/kitti_config00-02.yaml YOUR_DATASET_FOLDER/sequences/00/

#  KITTI GPS Fusion (Stereo + GPS)
./run.sh -kg ~/catkin_ws/src/VINS-Fusion/config/kitti_raw/kitti_10_03_config.yaml YOUR_DATASET_FOLDER/2011_10_03_drive_0027_sync/

In Euroc cases, you need open another terminal and play your bag file. If you need modify the code, simply re-run ./run.sh with proper auguments after your changes.

8. Acknowledgements

We use ceres solver for non-linear optimization and DBoW2 for loop detection, a generic camera model and GeographicLib.

9. License

The source code is released under GPLv3 license.

We are still working on improving the code reliability. For any technical issues, please contact Tong Qin <qintonguavATgmail.com>.

For commercial inquiries, please contact Shaojie Shen <eeshaojieATust.hk>.

More Repositories

1

VINS-Mono

A Robust and Versatile Monocular Visual-Inertial State Estimator
C++
4,967
star
2

Fast-Planner

A Robust and Efficient Trajectory Planner for Quadrotors
C++
2,433
star
3

A-LOAM

Advanced implementation of LOAM
C++
1,957
star
4

VINS-Mobile

Monocular Visual-Inertial State Estimator on Mobile Phones
C++
1,269
star
5

Teach-Repeat-Replan

Teach-Repeat-Replan: A Complete and Robust System for Aggressive Flight in Complex Environments
C++
951
star
6

GVINS

Tightly coupled GNSS-Visual-Inertial system for locally smooth and globally consistent state estimation in complex environment.
C++
882
star
7

FUEL

An Efficient Framework for Fast UAV Exploration
C++
744
star
8

Stereo-RCNN

Code for 'Stereo R-CNN based 3D Object Detection for Autonomous Driving' (CVPR 2019)
Python
690
star
9

DenseSurfelMapping

This is the open-source version of ICRA 2019 submission "Real-time Scalable Dense Surfel Mapping"
C++
661
star
10

FIESTA

Fast Incremental Euclidean Distance Fields for Online Motion Planning of Aerial Robots
C++
617
star
11

EPSILON

C++
493
star
12

ESVO

This repository maintains the implementation of "Event-based Stereo Visual Odometry".
C++
408
star
13

Btraj

Bezier Trajectory Generation for Autonomous Quadrotor, ICRA 2018
C++
407
star
14

grad_traj_optimization

Gradient-Based Online Safe Trajectory Generator
C++
363
star
15

MonoLaneMapping

Online Monocular Lane Mapping Using Catmull-Rom Spline (IROS 2023)
Python
349
star
16

open_quadtree_mapping

This is a monocular dense mapping system corresponding to IROS 2018 "Quadtree-accelerated Real-time Monocular Dense Mapping"
Cuda
347
star
17

MVDepthNet

This repository provides PyTorch implementation for 3DV 2018 paper "MVDepthNet: real-time multiview depth estimation neural network"
Python
305
star
18

D2SLAM

$D^2$SLAM: Decentralized and Distributed Collaborative Visual-inertial SLAM System for Aerial Swarm
Jupyter Notebook
277
star
19

OmniNxt

[IROS 2024 Oral] A Fully Open-source and Compact Aerial Robot with Omnidirectional Visual Perception
255
star
20

G3Reg

A fast and robust global registration library for outdoor LiDAR point clouds.
C++
200
star
21

GVINS-Dataset

A dataset containing synchronized visual, inertial and GNSS raw measurements.
C++
197
star
22

Nxt-FC

Mini PX4 for UAV Group
Shell
187
star
23

Omni-swarm

A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.
Jupyter Notebook
179
star
24

spatiotemporal_semantic_corridor

Implementation of the paper "Safe Trajectory Generation For Complex Urban Environments Using Spatio-temporal Semantic Corridor".
C++
160
star
25

PredRecon

[ICRA 2023] A Prediction-boosted Planner for Fast and High-quality Autonomous Aerial Reconstruction
C++
156
star
26

FC-Planner

[ICRA 2024 Best UAV Paper Award Finalist] An Efficient Gloabl Planner for Aerial Coverage
C++
155
star
27

eudm_planner

Implementation of the paper "Efficient Uncertainty-aware Decision-making for Automated Driving Using Guided Branching".
C++
139
star
28

mockamap

a simple map generator based on ROS
C++
133
star
29

DSP

Trajectory Prediction with Graph-based Dual-scale Context Fusion
Python
132
star
30

pointcloudTraj

Trajectory generation on point clouds
C++
128
star
31

Pagor

Pyramid Semantic Graph-based Global Point Cloud Registration with Low Overlap (IROS 2023)
C++
127
star
32

Flow-Motion-Depth

This is the project page of the paper "Flow-Motion and Depth Network for Monocular Stereo and Beyond''
Python
114
star
33

gnss_comm

Basic definitions and utility functions for GNSS raw measurement processing
C++
111
star
34

SIMPL

SIMPL: A Simple and Efficient Multi-agent Motion Prediction Baseline for Autonomous Driving
Python
107
star
35

VINS-kidnap

a place recognition system for VINS-fusion
105
star
36

ublox_driver

A driver for u-blox receiver (ZED-F9P) with ros support
C++
102
star
37

TopoTraj

A robust UAV local planner based on the ICRA2020 paper: Robust Real-time UAV Replanning Using Guided Gradient-based Optimization and Topological Paths
90
star
38

TimeOptimizer

Optimal Time Allocation for Quadrotor Trajectory Generation
C++
83
star
39

AutoTrans

AutoTrans: A Complete Planning and Control Framework for Autonomous UAV Payload Transportation.
C++
76
star
40

LiDAR-Registration-Benchmark

LiDAR-based 3D global registration benchmark.
Python
75
star
41

Pinhole-Fisheye-Mapping

70
star
42

UniQuad

UniQuad: A Unified and Versatile Quadrotor Platform Series for UAV Research and Application
67
star
43

IMPACTOR

Impact-Aware Planning and Control for Aerial Robots with Suspended Payloads
C
67
star
44

SLABIM

An open-sourced SLAM dataset that couples with BIM (Building Information Modeling).
Python
66
star
45

HKUST-ELEC5660-Introduction-to-Aerial-Robotics

Repo for HKUST ELEC5660 Course Notes & Lab Tutorial & Project Docker
C++
57
star
46

EMSGC

This repository maintains the implementation of the paper "Event-based Motion Segmentation withSpatio-Temporal Graph Cuts".
C++
56
star
47

VINS-Fisheye

Fisheye version of VINS-Fusion
C++
52
star
48

GeometricPretraining

This is the code base for paper ``Geometric Pretraining for Monocular Depth Estimation``, the paper is currently under review. The preprint will be available when it is ready.
49
star
49

APACE

APACE: Agile and Perception-aware Trajectory Generation for Quadrotor Flights (ICRA2024)
C++
37
star
50

plan_utils

Some useful pkgs for running planning simulation.
Makefile
29
star
51

edge_alignment

Clone of https://github.com/mpkuse/edge_alignment
C++
26
star
52

mockasimulator

C++
21
star
53

probabilistic_mapping

Probabilistic Dense Mapping
C++
19
star
54

swarm_gcs

Ground Station Software for aerial robots.
JavaScript
18
star
55

stTraj

Spatial-temporal Trajectory Planning for UAV Teach-and-Repeat
15
star
56

MASSTAR

A Multi-modal Large-scale Scene Dataset and A Versatile Toolchain for Scene Prediction
13
star
57

SLIM

7
star
58

mockacam

Camera package of mocka WFB
C++
3
star
59

RI_Mocap

Mocap device driver of RI
C++
1
star