• Stars
    star
    882
  • Rank 51,756 (Top 2 %)
  • Language
    C++
  • License
    GNU General Publi...
  • Created over 3 years ago
  • Updated about 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Tightly coupled GNSS-Visual-Inertial system for locally smooth and globally consistent state estimation in complex environment.

GVINS

GVINS: Tightly Coupled GNSS-Visual-Inertial Fusion for Smooth and Consistent State Estimation. paper link

Authors: Shaozu CAO, Xiuyuan LU and Shaojie SHEN

GVINS is a non-linear optimization based system that tightly fuses GNSS raw measurements with visual and inertial information for real-time and drift-free state estimation. By incorporating GNSS pseudorange and Doppler shift measurements, GVINS is capable to provide smooth and consistent 6-DoF global localization in complex environment. The system framework and VIO part are adapted from VINS-Mono. Our system contains the following features:

  • global 6-DoF estimation in ECEF frame;
  • multi-constellation support (GPS, GLONASS, Galileo, BeiDou);
  • online local-ENU frame alignment;
  • global pose recovery in GNSS-unfriendly or even GNSS-denied area.

Video:

GVINS Video

1. Prerequisites

1.1 C++11 Compiler

This package requires some features of C++11.

1.2 ROS

This package is developed under ROS Kinetic environment.

1.3 Eigen

Our code uses Eigen 3.3.3 for matrix manipulation.

1.4 Ceres

We use ceres 1.12.0 to solve the non-linear optimization problem.

1.5 gnss_comm

This package also requires gnss_comm for ROS message definitions and some utility functions. Follow those instructions to build the gnss_comm package.

2. Build GVINS

Clone the repository to your catkin workspace (for example ~/catkin_ws/):

cd ~/catkin_ws/src/
git clone https://github.com/HKUST-Aerial-Robotics/GVINS.git

Then build the package with:

cd ~/catkin_ws/
catkin_make
source ~/catkin_ws/devel/setup.bash

If you encounter any problem during the building of GVINS, we recommend you to try docker first.

3. Docker Support

To simplify the building process, we add docker in our code. Docker is like a sandbox so it can isolate our code from your local environment. To run with docker, first make sure ros and docker are installed on your machine. Then add your account to docker group by sudo usermod -aG docker $USER. Logout and re-login to avoid the Permission denied error, then type:

cd ~/catkin_ws/src/GVINS/docker
make build

The docker image gvins:latest should be successfully built after a while. Then you can run GVINS with:

./run.sh LAUNCH_FILE

(for example ./run.sh visensor_f9p.launch). Open another terminal and play your rosbag file, then you should be able to see the result. If you modify the code, simply re-run ./run.sh LAUNCH_FILE to update.

4. Run GVINS with our dataset

Download our GVINS-Dataset and launch GVINS via:

roslaunch gvins visensor_f9p.launch

Open another terminal and launch the rviz by:

rviz -d ~/catkin_ws/src/GVINS/config/gvins_rviz_config.rviz

Then play the bag:

rosbag play sports_field.bag

5. Run GVINS with your device

  1. Setup the visual-inertial sensor suit according to these instructions;
  2. Configure your GNSS receiver to output raw measurement and ephemeris and convert them as ros messages. If you are using u-blox receiver, please checkout our ublox_driver package;
  3. Deal with the synchronization between visual-inertial sensor and GNSS receiver. A coarse synchronization can be done via ublox_driver but the accuracy is not guaranteed. For better performance, we recommend hardware synchronization via receiver's PPS signal;
  4. Change the topic name in the config file and create a launch file pointing to the corresponding config file. Launch the GVINS with roslaunch gvins YOUR_LAUNCH_FILE.launch.

6. Acknowledgements

The system framework and VIO part are adapted from VINS-Mono. We use camodocal for camera modelling and ceres to solve the optimization problem.

7. Licence

The source code is released under GPLv3 license.

More Repositories

1

VINS-Mono

A Robust and Versatile Monocular Visual-Inertial State Estimator
C++
4,967
star
2

VINS-Fusion

An optimization-based multi-sensor state estimator
C++
3,181
star
3

Fast-Planner

A Robust and Efficient Trajectory Planner for Quadrotors
C++
2,433
star
4

A-LOAM

Advanced implementation of LOAM
C++
1,957
star
5

VINS-Mobile

Monocular Visual-Inertial State Estimator on Mobile Phones
C++
1,269
star
6

Teach-Repeat-Replan

Teach-Repeat-Replan: A Complete and Robust System for Aggressive Flight in Complex Environments
C++
951
star
7

FUEL

An Efficient Framework for Fast UAV Exploration
C++
744
star
8

Stereo-RCNN

Code for 'Stereo R-CNN based 3D Object Detection for Autonomous Driving' (CVPR 2019)
Python
690
star
9

DenseSurfelMapping

This is the open-source version of ICRA 2019 submission "Real-time Scalable Dense Surfel Mapping"
C++
661
star
10

FIESTA

Fast Incremental Euclidean Distance Fields for Online Motion Planning of Aerial Robots
C++
617
star
11

EPSILON

C++
493
star
12

ESVO

This repository maintains the implementation of "Event-based Stereo Visual Odometry".
C++
408
star
13

Btraj

Bezier Trajectory Generation for Autonomous Quadrotor, ICRA 2018
C++
407
star
14

grad_traj_optimization

Gradient-Based Online Safe Trajectory Generator
C++
363
star
15

MonoLaneMapping

Online Monocular Lane Mapping Using Catmull-Rom Spline (IROS 2023)
Python
349
star
16

open_quadtree_mapping

This is a monocular dense mapping system corresponding to IROS 2018 "Quadtree-accelerated Real-time Monocular Dense Mapping"
Cuda
347
star
17

MVDepthNet

This repository provides PyTorch implementation for 3DV 2018 paper "MVDepthNet: real-time multiview depth estimation neural network"
Python
305
star
18

D2SLAM

$D^2$SLAM: Decentralized and Distributed Collaborative Visual-inertial SLAM System for Aerial Swarm
Jupyter Notebook
277
star
19

OmniNxt

[IROS 2024 Oral] A Fully Open-source and Compact Aerial Robot with Omnidirectional Visual Perception
255
star
20

G3Reg

A fast and robust global registration library for outdoor LiDAR point clouds.
C++
200
star
21

GVINS-Dataset

A dataset containing synchronized visual, inertial and GNSS raw measurements.
C++
197
star
22

Nxt-FC

Mini PX4 for UAV Group
Shell
187
star
23

Omni-swarm

A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.
Jupyter Notebook
179
star
24

spatiotemporal_semantic_corridor

Implementation of the paper "Safe Trajectory Generation For Complex Urban Environments Using Spatio-temporal Semantic Corridor".
C++
160
star
25

PredRecon

[ICRA 2023] A Prediction-boosted Planner for Fast and High-quality Autonomous Aerial Reconstruction
C++
156
star
26

FC-Planner

[ICRA 2024 Best UAV Paper Award Finalist] An Efficient Gloabl Planner for Aerial Coverage
C++
155
star
27

eudm_planner

Implementation of the paper "Efficient Uncertainty-aware Decision-making for Automated Driving Using Guided Branching".
C++
139
star
28

mockamap

a simple map generator based on ROS
C++
133
star
29

DSP

Trajectory Prediction with Graph-based Dual-scale Context Fusion
Python
132
star
30

pointcloudTraj

Trajectory generation on point clouds
C++
128
star
31

Pagor

Pyramid Semantic Graph-based Global Point Cloud Registration with Low Overlap (IROS 2023)
C++
127
star
32

Flow-Motion-Depth

This is the project page of the paper "Flow-Motion and Depth Network for Monocular Stereo and Beyond''
Python
114
star
33

gnss_comm

Basic definitions and utility functions for GNSS raw measurement processing
C++
111
star
34

SIMPL

SIMPL: A Simple and Efficient Multi-agent Motion Prediction Baseline for Autonomous Driving
Python
107
star
35

VINS-kidnap

a place recognition system for VINS-fusion
105
star
36

ublox_driver

A driver for u-blox receiver (ZED-F9P) with ros support
C++
102
star
37

TopoTraj

A robust UAV local planner based on the ICRA2020 paper: Robust Real-time UAV Replanning Using Guided Gradient-based Optimization and Topological Paths
90
star
38

TimeOptimizer

Optimal Time Allocation for Quadrotor Trajectory Generation
C++
83
star
39

AutoTrans

AutoTrans: A Complete Planning and Control Framework for Autonomous UAV Payload Transportation.
C++
76
star
40

LiDAR-Registration-Benchmark

LiDAR-based 3D global registration benchmark.
Python
75
star
41

Pinhole-Fisheye-Mapping

70
star
42

UniQuad

UniQuad: A Unified and Versatile Quadrotor Platform Series for UAV Research and Application
67
star
43

IMPACTOR

Impact-Aware Planning and Control for Aerial Robots with Suspended Payloads
C
67
star
44

SLABIM

An open-sourced SLAM dataset that couples with BIM (Building Information Modeling).
Python
66
star
45

HKUST-ELEC5660-Introduction-to-Aerial-Robotics

Repo for HKUST ELEC5660 Course Notes & Lab Tutorial & Project Docker
C++
57
star
46

EMSGC

This repository maintains the implementation of the paper "Event-based Motion Segmentation withSpatio-Temporal Graph Cuts".
C++
56
star
47

VINS-Fisheye

Fisheye version of VINS-Fusion
C++
52
star
48

GeometricPretraining

This is the code base for paper ``Geometric Pretraining for Monocular Depth Estimation``, the paper is currently under review. The preprint will be available when it is ready.
49
star
49

APACE

APACE: Agile and Perception-aware Trajectory Generation for Quadrotor Flights (ICRA2024)
C++
37
star
50

plan_utils

Some useful pkgs for running planning simulation.
Makefile
29
star
51

edge_alignment

Clone of https://github.com/mpkuse/edge_alignment
C++
26
star
52

mockasimulator

C++
21
star
53

probabilistic_mapping

Probabilistic Dense Mapping
C++
19
star
54

swarm_gcs

Ground Station Software for aerial robots.
JavaScript
18
star
55

stTraj

Spatial-temporal Trajectory Planning for UAV Teach-and-Repeat
15
star
56

MASSTAR

A Multi-modal Large-scale Scene Dataset and A Versatile Toolchain for Scene Prediction
13
star
57

SLIM

7
star
58

mockacam

Camera package of mocka WFB
C++
3
star
59

RI_Mocap

Mocap device driver of RI
C++
1
star