• Stars
    star
    305
  • Rank 136,879 (Top 3 %)
  • Language
    Python
  • License
    GNU General Publi...
  • Created over 6 years ago
  • Updated about 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

This repository provides PyTorch implementation for 3DV 2018 paper "MVDepthNet: real-time multiview depth estimation neural network"

MVDepthNet

A Real-time Multiview Depth Estimation Network

This is an open source implementation for 3DV 2018 submission "MVDepthNet: real-time multiview depth estimation neural network" by Kaixuan Wang and Shaojie Shen. arXiv link. If you find the project useful for your research, please cite:

@InProceedings{mvdepthnet,
    author       = "K. Wang and S. Shen",
    title        = "MVDepthNet: real-time multiview depth estimation neural network",
    booktitle    = "International Conference on 3D Vision (3DV)",
    month        = "Sep.",
    year         = "2018",
  }

Given multiple images and the corresponding camera poses, a cost volume is firstly calculated and then combined with the reference image to generate the depth map. An example is

MVDepthNet example

From left to right is: the left image, the right image, the "ground truth" depth from RGB-D cameras and the estimated depth map.

A video can be used to illustrate the performance of our system:

video

1.0 Prerequisites

  • PyTorch

The PyTorch version used in the implementation is 0.3. To use the network in higher versions, only small changes are needed.

  • OpenCV

  • NumPy

2.0 Download the model parameters and the samples

UPDATE: the dropbox link has failed because of the large traffic. This is the BaiduPan link: model weight: ι“ΎζŽ₯: https://pan.baidu.com/s/1CjV6iWBbjWOxGetf2ZXStQ 提取码: gbfg and sample data: ι“ΎζŽ₯: https://pan.baidu.com/s/1feYfF6qSd7z7_anmR_rgnQ 提取码: g1fo.

We provide a trained model used in our paper evaluation and some images to run the example code.

Please download the model via the link and the sample images via the link. Put the model opensource_model.pth.tar and extract the sample_data.pkl.tar.gz under the project folder.

3.0 Run the example

Just

python example.py

4.0 Use your own data

To use the network, you need to provide a left image, a right image, camera intrinsic parameters and the relative camera pose. Images are normalized using the mean 81.0 and the std 35.0, for example

normalized_image = (image - 81.0)/35.0.

We here provide the file example2.py to shown how to run the network using your own data. the left_pose and right_pose is the camera pose in the world frame. we show left_image, right_image, and the predicted depth in the final visualization window. A red dot in the left_image is used to test the relative pose accuracy. The red line in the right_image is the epiploar line that it much contains the red dot in the left_image. Otherwise, the pose is not accurate. You can change the position of the tested point in line 56.

To get good results, images should have enough translation and overlap between each other. Rotation dose not help in the depth estimation.

4.1 Use multiple images

Please refer to depthNet_model.py, use the function getVolume to construct multiple volumes and average them. Input the model with the reference image and the averaged cost volume to get the estimated depth maps.

5.0 Acknowledgement

Most of the training data and test data are collected by DeMoN and we thank their work.

More Repositories

1

VINS-Mono

A Robust and Versatile Monocular Visual-Inertial State Estimator
C++
4,967
star
2

VINS-Fusion

An optimization-based multi-sensor state estimator
C++
3,181
star
3

Fast-Planner

A Robust and Efficient Trajectory Planner for Quadrotors
C++
2,433
star
4

A-LOAM

Advanced implementation of LOAM
C++
1,957
star
5

VINS-Mobile

Monocular Visual-Inertial State Estimator on Mobile Phones
C++
1,269
star
6

Teach-Repeat-Replan

Teach-Repeat-Replan: A Complete and Robust System for Aggressive Flight in Complex Environments
C++
951
star
7

GVINS

Tightly coupled GNSS-Visual-Inertial system for locally smooth and globally consistent state estimation in complex environment.
C++
882
star
8

FUEL

An Efficient Framework for Fast UAV Exploration
C++
744
star
9

Stereo-RCNN

Code for 'Stereo R-CNN based 3D Object Detection for Autonomous Driving' (CVPR 2019)
Python
690
star
10

DenseSurfelMapping

This is the open-source version of ICRA 2019 submission "Real-time Scalable Dense Surfel Mapping"
C++
661
star
11

FIESTA

Fast Incremental Euclidean Distance Fields for Online Motion Planning of Aerial Robots
C++
617
star
12

EPSILON

C++
493
star
13

ESVO

This repository maintains the implementation of "Event-based Stereo Visual Odometry".
C++
408
star
14

Btraj

Bezier Trajectory Generation for Autonomous Quadrotor, ICRA 2018
C++
407
star
15

grad_traj_optimization

Gradient-Based Online Safe Trajectory Generator
C++
363
star
16

MonoLaneMapping

Online Monocular Lane Mapping Using Catmull-Rom Spline (IROS 2023)
Python
349
star
17

open_quadtree_mapping

This is a monocular dense mapping system corresponding to IROS 2018 "Quadtree-accelerated Real-time Monocular Dense Mapping"
Cuda
347
star
18

D2SLAM

$D^2$SLAM: Decentralized and Distributed Collaborative Visual-inertial SLAM System for Aerial Swarm
Jupyter Notebook
277
star
19

OmniNxt

[IROS 2024 Oral] A Fully Open-source and Compact Aerial Robot with Omnidirectional Visual Perception
255
star
20

G3Reg

A fast and robust global registration library for outdoor LiDAR point clouds.
C++
200
star
21

GVINS-Dataset

A dataset containing synchronized visual, inertial and GNSS raw measurements.
C++
197
star
22

Nxt-FC

Mini PX4 for UAV Group
Shell
187
star
23

Omni-swarm

A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.
Jupyter Notebook
179
star
24

spatiotemporal_semantic_corridor

Implementation of the paper "Safe Trajectory Generation For Complex Urban Environments Using Spatio-temporal Semantic Corridor".
C++
160
star
25

PredRecon

[ICRA 2023] A Prediction-boosted Planner for Fast and High-quality Autonomous Aerial Reconstruction
C++
156
star
26

FC-Planner

[ICRA 2024 Best UAV Paper Award Finalist] An Efficient Gloabl Planner for Aerial Coverage
C++
155
star
27

eudm_planner

Implementation of the paper "Efficient Uncertainty-aware Decision-making for Automated Driving Using Guided Branching".
C++
139
star
28

mockamap

a simple map generator based on ROS
C++
133
star
29

DSP

Trajectory Prediction with Graph-based Dual-scale Context Fusion
Python
132
star
30

pointcloudTraj

Trajectory generation on point clouds
C++
128
star
31

Pagor

Pyramid Semantic Graph-based Global Point Cloud Registration with Low Overlap (IROS 2023)
C++
127
star
32

Flow-Motion-Depth

This is the project page of the paper "Flow-Motion and Depth Network for Monocular Stereo and Beyond''
Python
114
star
33

gnss_comm

Basic definitions and utility functions for GNSS raw measurement processing
C++
111
star
34

SIMPL

SIMPL: A Simple and Efficient Multi-agent Motion Prediction Baseline for Autonomous Driving
Python
107
star
35

VINS-kidnap

a place recognition system for VINS-fusion
105
star
36

ublox_driver

A driver for u-blox receiver (ZED-F9P) with ros support
C++
102
star
37

TopoTraj

A robust UAV local planner based on the ICRA2020 paper: Robust Real-time UAV Replanning Using Guided Gradient-based Optimization and Topological Paths
90
star
38

TimeOptimizer

Optimal Time Allocation for Quadrotor Trajectory Generation
C++
83
star
39

AutoTrans

AutoTrans: A Complete Planning and Control Framework for Autonomous UAV Payload Transportation.
C++
76
star
40

LiDAR-Registration-Benchmark

LiDAR-based 3D global registration benchmark.
Python
75
star
41

Pinhole-Fisheye-Mapping

70
star
42

UniQuad

UniQuad: A Unified and Versatile Quadrotor Platform Series for UAV Research and Application
67
star
43

IMPACTOR

Impact-Aware Planning and Control for Aerial Robots with Suspended Payloads
C
67
star
44

SLABIM

An open-sourced SLAM dataset that couples with BIM (Building Information Modeling).
Python
66
star
45

HKUST-ELEC5660-Introduction-to-Aerial-Robotics

Repo for HKUST ELEC5660 Course Notes & Lab Tutorial & Project Docker
C++
57
star
46

EMSGC

This repository maintains the implementation of the paper "Event-based Motion Segmentation withSpatio-Temporal Graph Cuts".
C++
56
star
47

VINS-Fisheye

Fisheye version of VINS-Fusion
C++
52
star
48

GeometricPretraining

This is the code base for paper ``Geometric Pretraining for Monocular Depth Estimation``, the paper is currently under review. The preprint will be available when it is ready.
49
star
49

APACE

APACE: Agile and Perception-aware Trajectory Generation for Quadrotor Flights (ICRA2024)
C++
37
star
50

plan_utils

Some useful pkgs for running planning simulation.
Makefile
29
star
51

edge_alignment

Clone of https://github.com/mpkuse/edge_alignment
C++
26
star
52

mockasimulator

C++
21
star
53

probabilistic_mapping

Probabilistic Dense Mapping
C++
19
star
54

swarm_gcs

Ground Station Software for aerial robots.
JavaScript
18
star
55

stTraj

Spatial-temporal Trajectory Planning for UAV Teach-and-Repeat
15
star
56

MASSTAR

A Multi-modal Large-scale Scene Dataset and A Versatile Toolchain for Scene Prediction
13
star
57

SLIM

7
star
58

mockacam

Camera package of mocka WFB
C++
3
star
59

RI_Mocap

Mocap device driver of RI
C++
1
star