• Stars
    star
    221
  • Rank 179,773 (Top 4 %)
  • Language
    Python
  • Created about 4 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net

Code accompanying the NeurIPS 2020 oral paper

Network-to-Network Translation with Conditional Invertible Neural Networks
Robin Rombach*, Patrick Esser*, Björn Ommer
* equal contribution

tl;dr Our approach distills the residual information of one model with respect to another's and thereby enables translation between fixed off-the-shelf expert models such as BERT and BigGAN without having to modify or finetune them.

teaser arXiv | BibTeX | Project Page

News Dec 19th, 2020: added SBERT-to-BigGAN, SBERT-to-BigBiGAN and SBERT-to-AE (COCO)

Requirements

A suitable conda environment named net2net can be created and activated with:

conda env create -f environment.yaml
conda activate net2net

Datasets

  • CelebA: Create a symlink 'data/CelebA' pointing to a folder which contains the following files:
    .
    ├── identity_CelebA.txt
    ├── img_align_celeba
    ├── list_attr_celeba.txt
    └── list_eval_partition.txt
    
    These files can be obtained here.
  • CelebA-HQ: Create a symlink data/celebahq pointing to a folder containing the .npy files of CelebA-HQ (instructions to obtain them can be found in the PGGAN repository).
  • FFHQ: Create a symlink data/ffhq pointing to the images1024x1024 folder obtained from the FFHQ repository.
  • Anime Faces: First download the face images from the Anime Crop dataset and then apply the preprocessing of FFHQ to those images. We only keep images where the underlying dlib face recognition model recognizes a face. Finally, create a symlink data/anime which contains the processed anime face images.
  • Oil Portraits: Download here. Unpack the content and place the files in data/portraits. It consists of 18k oil portraits, which were obtained by running dlib on a subset of the WikiArt dataset dataset, kindly provided by A Style-Aware Content Loss for Real-time HD Style Transfer.
  • COCO: Create a symlink data/coco containing the images from the 2017 split in train2017 and val2017, and their annotations in annotations. Files can be obtained from the COCO webpage.

ML4Creativity Demo

We include a streamlit demo, which utilizes our approach to demonstrate biases of datasets and their creative applications. More information can be found in our paper A Note on Data Biases in Generative Models from the Machine Learning for Creativity and Design at NeurIPS 2020. Download the models from

and place them into logs. Run the demo with

streamlit run ml4cad.py

Training

Our code uses Pytorch-Lightning and thus natively supports things like 16-bit precision, multi-GPU training and gradient accumulation. Training details for any model need to be specified in a dedicated .yaml file. In general, such a config file is structured as follows:

model:
  base_learning_rate: 4.5e-6
  target: <path/to/lightning/module>
  params:
    ...
data:
  target: translation.DataModuleFromConfig
  params:
    batch_size: ...
    num_workers: ...
    train:
      target: <path/to/train/dataset>
      params:
        ...
    validation:
      target: <path/to/validation/dataset>
      params:
        ...

Any Pytorch-Lightning model specified under model.target is then trained on the specified data by running the command:

python translation.py --base <path/to/yaml> -t --gpus 0,

All available Pytorch-Lightning trainer arguments can be added via the command line, e.g. run

python translation.py --base <path/to/yaml> -t --gpus 0,1,2,3 --precision 16 --accumulate_grad_batches 2

to train a model on 4 GPUs using 16-bit precision and a 2-step gradient accumulation. More details are provided in the examples below.

Training a cINN

Training a cINN for network-to-network translation usually utilizes the Lighnting Module net2net.models.flows.flow.Net2NetFlow and makes a few further assumptions on the configuration file and model interface:

model:
  base_learning_rate: 4.5e-6
  target: net2net.models.flows.flow.Net2NetFlow
  params:
    flow_config:
      target: <path/to/cinn>
      params:
        ...

    cond_stage_config:
      target: <path/to/network1>
      params:
        ...

    first_stage_config:
      target: <path/to/network2>
      params:
        ...

Here, the entries under flow_config specifies the architecture and parameters of the conditional INN; cond_stage_config specifies the first network whose representation is to be translated into another network specified by first_stage_config. Our model net2net.models.flows.flow.Net2NetFlow expects that the first
network has a .encode() method which produces the representation of interest, while the second network should have an encode() and a decode() method, such that both of them applied sequentially produce the networks output. This allows for a modular combination of arbitrary models of interest. For more details, see the examples below.

Training a cINN - Superresolution

superres Training details for a cINN to concatenate two autoencoders from different image scales for stochastic superresolution are specified in configs/translation/faces32-to-256.yaml.

To train a model for translating from 32 x 32 images to 256 x 256 images on GPU 0, run

python translation.py --base configs/translation/faces32-to-faces256.yaml -t --gpus 0, 

and specify any additional training commands as described above. Note that this setup requires two pretrained autoencoder models, one on 32 x 32 images and the other on 256 x 256. If you want to train them yourself on a combination of FFHQ and CelebA-HQ, run

python translation.py --base configs/autoencoder/faces32.yaml -t --gpus <n>, 

for the 32 x 32 images; and

python translation.py --base configs/autoencoder/faces256.yaml -t --gpus <n>, 

for the model on 256 x 256 images. After training, adopt the corresponding model paths in configs/translation/faces32-to-faces256.yaml. Additionally, we provide weights of pretrained autoencoders for both settings: Weights 32x32; Weights256x256. To run the training as described above, put them into logs/2020-10-16T17-11-42_FacesFQ32x32/checkpoints/last.ckptand logs/2020-09-16T16-23-39_FacesXL256z128/checkpoints/last.ckpt, respectively.

Training a cINN - Unpaired Translation

superres All training scenarios for unpaired translation are specified in the configs in configs/creativity. We provide code and pretrained autoencoder models for three different translation tasks:

  • AnimePhotography; see configs/creativity/anime_photography_256.yaml. Download autoencoder checkpoint (Download Anime+Photography) and place into logs/2020-09-30T21-40-22_AnimeAndFHQ/checkpoints/epoch=000007.ckpt.
  • Oil-PortraitPhotography; see configs/creativity/portraits_photography_256.yaml Download autoencoder checkpoint (Download Portrait+Photography) and place into logs/2020-09-29T23-47-10_PortraitsAndFFHQ/checkpoints/epoch=000004.ckpt.
  • FFHQCelebA-HQCelebA; see configs/creativity/celeba_celebahq_ffhq_256.yaml Download autoencoder checkpoint (Download FFHQ+CelebAHQ+CelebA) and place into logs/2020-09-16T16-23-39_FacesXL256z128/checkpoints/last.ckpt. Note that this is the same autoencoder checkpoint as for the stochastic superresolution experiment.

To train a cINN on one of these unpaired transfer tasks using the first GPU, simply run

python translation.py --base configs/creativity/<task-of-interest>.yaml -t --gpus 0,

where <task-of-interest>.yaml is one of portraits_photography_256.yaml, celeba_celebahq_ffhq_256.yaml or anime_photography_256.yaml. Providing additional arguments to the pytorch-lightning trainer object is also possible as described above.

In our framework, unpaired translation between domains is formulated as a translation between expert 1, a model which can infer the domain a given image belongs to, and expert 2, a model which can synthesize images of each domain. In the examples provided, we assume that the domain label comes with the dataset and provide the net2net.modules.labels.model.Labelator module, which simply returns a one hot encoding of this label. However, one could also use a classification model which infers the domain label from the image itself. For expert 2, our examples use an autoencoder trained jointly on all domains, which is easily achieved by concatenating datasets together. The provided net2net.data.base.ConcatDatasetWithIndex concatenates datasets and returns the corresponding dataset label for each example, which can then be used by the Labelator class for the translation. The training configurations for the autoencoders used in the creativity experiments are included in configs/autoencoder/anime_photography_256.yaml, configs/autoencoder/celeba_celebahq_ffhq_256.yaml and configs/autoencoder/portraits_photography_256.yaml.

Unpaired Translation on Custom Datasets

Create pytorch datasets for each of your domains, create a concatenated dataset with ConcatDatasetWithIndex (follow the example in net2net.data.faces.CCFQTrain), train an autoencoder on the concatenated dataset (adjust the data section in configs/autoencoder/celeba_celebahq_ffhq_256.yaml) and finally train a net2net translation model between a Labelator and your autoencoder (adjust the sections data and first_stage_config in configs/creativity/celeba_celebahq_ffhq_256.yaml). You can then also add your new model to the available modes in the ml4cad.py demo to visualize the results.

Training a cINN - Text-to-Image

texttoimage We provide code to obtain a text-to-image model by translating between a text model (SBERT) and an image decoder. To show the flexibility of our approach, we include code for three different decoders: BigGAN, as described in the paper, BigBiGAN, which is only available as a tensorflow model and thus nicely shows how our approach can work with black-box experts, and an autoencoder.

SBERT-to-BigGAN

Train with

python translation.py --base configs/translation/sbert-to-biggan256.yaml -t --gpus 0,

When running it for the first time, the required models will be downloaded automatically.

SBERT-to-BigBiGAN

Since BigBiGAN is only available on tensorflow-hub, this example has an additional dependency on tensorflow. A suitable environment is provided in env_bigbigan.yaml, and you will need COCO for training. You can then start training with

python translation.py --base configs/translation/sbert-to-bigbigan.yaml -t --gpus 0,

Note that the BigBiGAN class is just a naive wrapper, which converts pytorch tensors to numpy arrays, feeds them to the tensorflow graph and again converts the result to pytorch tensors. It does not require gradients of the expert model and serves as a good example on how to use black-box experts.

SBERT-to-AE

Similarly to the other examples, you can also train your own autoencoder on COCO with

python translation.py --base configs/autoencoder/coco256.yaml -t --gpus 0,

or download a pre-trained one, and translate to it by running

python translation.py --base configs/translation/sbert-to-ae-coco256.yaml -t --gpus 0,

Shout-outs

Thanks to everyone who makes their code and models available.

BibTeX

@misc{rombach2020networktonetwork,
      title={Network-to-Network Translation with Conditional Invertible Neural Networks},
      author={Robin Rombach and Patrick Esser and Björn Ommer},
      year={2020},
      eprint={2005.13580},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@misc{esser2020note,
      title={A Note on Data Biases in Generative Models}, 
      author={Patrick Esser and Robin Rombach and Björn Ommer},
      year={2020},
      eprint={2012.02516},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

More Repositories

1

stable-diffusion

A latent text-to-image diffusion model
Jupyter Notebook
67,358
star
2

latent-diffusion

High-Resolution Image Synthesis with Latent Diffusion Models
Jupyter Notebook
11,417
star
3

taming-transformers

Taming Transformers for High-Resolution Image Synthesis
Jupyter Notebook
5,679
star
4

adaptive-style-transfer

source code for the ECCV18 paper A Style-Aware Content Loss for Real-time HD Style Transfer
Python
710
star
5

vunet

A generative model conditioned on shape and appearance.
Python
492
star
6

geometry-free-view-synthesis

Is a geometric model required to synthesize novel views from a single image?
Python
373
star
7

depth-fm

DepthFM: Fast Monocular Depth Estimation with Flow Matching
Jupyter Notebook
282
star
8

metric-learning-divide-and-conquer

Source code for the paper "Divide and Conquer the Embedding Space for Metric Learning", CVPR 2019
Python
262
star
9

zigma

A PyTorch implementation of the paper "ZigMa: A DiT-Style Mamba-based Diffusion Model"
Python
188
star
10

image2video-synthesis-using-cINNs

Implementation of Stochastic Image-to-Video Synthesis using cINNs.
Python
183
star
11

brushstroke-parameterized-style-transfer

TensorFlow implementation of our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".
Python
158
star
12

fm-boosting

FMBoost: Boosting Latent Diffusion with Flow Matching (ECCV 2024 Oral)
122
star
13

imagebart

ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis
Python
122
star
14

iin

A Disentangling Invertible Interpretation Network
Python
122
star
15

retrieval-augmented-diffusion-models

Official codebase for the Paper “Retrieval-Augmented Diffusion Models”
Jupyter Notebook
112
star
16

attribute-control

Fine-Grained Subject-Specific Attribute Expression Control in T2I Models
Jupyter Notebook
101
star
17

content-style-disentangled-ST

Content and Style Disentanglement for Artistic Style Transfer [ICCV19]
89
star
18

unsupervised-disentangling

Python
54
star
19

invariances

Making Sense of CNNs: Interpreting Deep Representations & Their Invariances with Invertible Neural Networks
Python
53
star
20

interactive-image2video-synthesis

Python
51
star
21

ipoke

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis
Python
46
star
22

instant-lora-composition

31
star
23

unsupervised-part-segmentation

Code for GCPR 2020 Oral : "Unsupervised Part Discovery by Unsupervised Disentanglement"
Jupyter Notebook
30
star
24

behavior-driven-video-synthesis

Python
27
star
25

content-targeted-style-transfer

Content Transformation Block For Image Style Transfer [CVPR19]
24
star
26

robust-disentangling

Unsupervised Robust Disentangling of Latent Characteristics for Image Synthesis
Python
23
star
27

metric-learning-divide-and-conquer-improved

Source code for the paper "Improving Deep Metric Learning byDivide and Conquer"
Python
20
star
28

cuneiform-sign-detection-dataset

Dataset provided with the article "Deep learning for cuneiform sign detection with weak supervision using transliteration alignment". It comprises image references, transliterations and sign annotations of clay tablets from the Neo-Assyrian epoch.
Jupyter Notebook
11
star
29

visual-search

Visual search interface
10
star
30

magnify-posture-deviations

Unsupervised Magnification of Posture Deviations Across Subjects
9
star
31

cuneiform-sign-detection-code

Code for the article "Deep learning of cuneiform sign detection with weak supervision using transliteration alignment"
Jupyter Notebook
7
star
32

hbugen2018

Towards Learning a Realistic Rendering of Human Behavior
7
star
33

AutomaticBehaviorAnalysis_NatureComm

Source Code + Documentation of our Automatic Behavior Analysis Software
MATLAB
5
star
34

cuneiform-sign-detection-webapp

Code for demo web application of the article "Deep learning for cuneiform sign detection with weak supervision using transliteration alignment".
JavaScript
4
star
35

Characterizing_Generalization_in_DML

Python
3
star
36

network-fusion

1
star