• Stars
    star
    158
  • Rank 237,131 (Top 5 %)
  • Language
    Python
  • License
    MIT License
  • Created over 3 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

TensorFlow implementation of our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021)

img

Project page | Paper | Colab | Colab for Drawing App

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes.
Dmytro Kotovenko*, Matthias Wright*, Arthur Heimbrecht, and Björn Ommer.
* denotes equal contribution

Implementations

We provide implementations in Tensorflow 1 and Tensorflow 2. In order to reproduce the results from the paper, we recommend the Tensorflow 1 implementation.

Installation

  1. Clone this repository:
    > git clone https://github.com/CompVis/brushstroke-parameterized-style-transfer
    > cd brushstroke-parameterized-style-transfer
  2. Install Tensorflow 1.14 (preferably with GPU support).
    If you are using Conda, this command will create a new environment and install Tensorflow as well as compatible CUDA and cuDNN versions.
    > conda create --name tf14 tensorflow-gpu==1.14
    > conda activate tf14
  3. Install requirements:
    > pip install -r requirements.txt

Basic Usage

from PIL import Image
import model

content_img = Image.open('images/content/golden_gate.jpg')
style_img = Image.open('images/style/van_gogh_starry_night.jpg')

stylized_img = model.stylize(content_img,
                             style_img,
                             num_strokes=5000,
                             num_steps=100,
                             content_weight=1.0,
                             style_weight=3.0,
                             num_steps_pixel=1000)

stylized_img.save('images/stylized.jpg')

or open Colab.

Drawing App

We created a Streamlit app where you can draw curves to control the flow of brushstrokes.

img

Run drawing app on your machine

To run the app on your own machine:

> CUDA_VISIBLE_DEVICES=0 streamlit run app.py

You can also run the app on a remote server and forward the port to your local machine: https://docs.streamlit.io/en/0.66.0/tutorial/run_streamlit_remotely.html

Run streamlit app from Colab

If you don't have access to GPUs we also created a Colab from which you can start the drawing app.

Other implementations

PyTorch implementation by justanhduc.

Citation

@article{kotovenko_cvpr_2021,
    title={Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes},
    author={Dmytro Kotovenko and Matthias Wright and Arthur Heimbrecht and Bj{\"o}rn Ommer},
    journal={CVPR},
    year={2021}
}

More Repositories

1

stable-diffusion

A latent text-to-image diffusion model
Jupyter Notebook
67,358
star
2

latent-diffusion

High-Resolution Image Synthesis with Latent Diffusion Models
Jupyter Notebook
11,417
star
3

taming-transformers

Taming Transformers for High-Resolution Image Synthesis
Jupyter Notebook
5,679
star
4

adaptive-style-transfer

source code for the ECCV18 paper A Style-Aware Content Loss for Real-time HD Style Transfer
Python
710
star
5

vunet

A generative model conditioned on shape and appearance.
Python
492
star
6

geometry-free-view-synthesis

Is a geometric model required to synthesize novel views from a single image?
Python
373
star
7

depth-fm

DepthFM: Fast Monocular Depth Estimation with Flow Matching
Jupyter Notebook
282
star
8

metric-learning-divide-and-conquer

Source code for the paper "Divide and Conquer the Embedding Space for Metric Learning", CVPR 2019
Python
262
star
9

net2net

Network-to-Network Translation with Conditional Invertible Neural Networks
Python
221
star
10

zigma

A PyTorch implementation of the paper "ZigMa: A DiT-Style Mamba-based Diffusion Model"
Python
188
star
11

image2video-synthesis-using-cINNs

Implementation of Stochastic Image-to-Video Synthesis using cINNs.
Python
183
star
12

fm-boosting

FMBoost: Boosting Latent Diffusion with Flow Matching (ECCV 2024 Oral)
122
star
13

imagebart

ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis
Python
122
star
14

iin

A Disentangling Invertible Interpretation Network
Python
122
star
15

retrieval-augmented-diffusion-models

Official codebase for the Paper “Retrieval-Augmented Diffusion Models”
Jupyter Notebook
112
star
16

attribute-control

Fine-Grained Subject-Specific Attribute Expression Control in T2I Models
Jupyter Notebook
101
star
17

content-style-disentangled-ST

Content and Style Disentanglement for Artistic Style Transfer [ICCV19]
89
star
18

unsupervised-disentangling

Python
54
star
19

invariances

Making Sense of CNNs: Interpreting Deep Representations & Their Invariances with Invertible Neural Networks
Python
53
star
20

interactive-image2video-synthesis

Python
51
star
21

ipoke

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis
Python
46
star
22

instant-lora-composition

31
star
23

unsupervised-part-segmentation

Code for GCPR 2020 Oral : "Unsupervised Part Discovery by Unsupervised Disentanglement"
Jupyter Notebook
30
star
24

behavior-driven-video-synthesis

Python
27
star
25

content-targeted-style-transfer

Content Transformation Block For Image Style Transfer [CVPR19]
24
star
26

robust-disentangling

Unsupervised Robust Disentangling of Latent Characteristics for Image Synthesis
Python
23
star
27

metric-learning-divide-and-conquer-improved

Source code for the paper "Improving Deep Metric Learning byDivide and Conquer"
Python
20
star
28

cuneiform-sign-detection-dataset

Dataset provided with the article "Deep learning for cuneiform sign detection with weak supervision using transliteration alignment". It comprises image references, transliterations and sign annotations of clay tablets from the Neo-Assyrian epoch.
Jupyter Notebook
11
star
29

visual-search

Visual search interface
10
star
30

magnify-posture-deviations

Unsupervised Magnification of Posture Deviations Across Subjects
9
star
31

cuneiform-sign-detection-code

Code for the article "Deep learning of cuneiform sign detection with weak supervision using transliteration alignment"
Jupyter Notebook
7
star
32

hbugen2018

Towards Learning a Realistic Rendering of Human Behavior
7
star
33

AutomaticBehaviorAnalysis_NatureComm

Source Code + Documentation of our Automatic Behavior Analysis Software
MATLAB
5
star
34

cuneiform-sign-detection-webapp

Code for demo web application of the article "Deep learning for cuneiform sign detection with weak supervision using transliteration alignment".
JavaScript
4
star
35

Characterizing_Generalization_in_DML

Python
3
star
36

network-fusion

1
star