• Stars
    star
    704
  • Rank 64,316 (Top 2 %)
  • Language
    Python
  • License
    MIT License
  • Created over 5 years ago
  • Updated almost 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Learning to Cluster Faces (CVPR 2019, CVPR 2020)

Learning to Cluster Faces

This repo provides an official implementation for [1, 2] and a re-implementation of [3].

Paper

  1. Learning to Cluster Faces on an Affinity Graph, CVPR 2019 (Oral) [Project Page]
  2. Learning to Cluster Faces via Confidence and Connectivity Estimation, CVPR 2020 [Project Page]
  3. Linkage-based Face Clustering via Graph Convolution Network, CVPR 2019

Requirements

Setup and get data

Install dependencies

conda install faiss-gpu -c pytorch
pip install -r requirements.txt

Datasets

Please refer to DATASET.md for data preparation.

Model zoo

Pretrained models are available in the model zoo.

Run

  1. Fetch code & Create soft link
git clone [email protected]:yl-1993/learn-to-cluster.git
cd learn-to-cluster
ln -s xxx/data data
  1. Run algorithms

Follow the instructions in dsgcn, vegcn and lgcn to run algorithms.

Results on part1_test (584K)

Method Precision Recall F-score
Chinese Whispers (k=80, th=0.6, iters=20) 55.49 52.46 53.93
Approx Rank Order (k=80, th=0) 99.77 7.2 13.42
MiniBatchKmeans (ncluster=5000, bs=100) 45.48 80.98 58.25
KNN DBSCAN (k=80, th=0.7, eps=0.25, min=1) 95.25 52.79 67.93
FastHAC (dist=0.72, single) 92.07 57.28 70.63
DaskSpectral (ncluster=8573, affinity='rbf') 78.75 66.59 72.16
CDP (single model, th=0.7) 80.19 70.47 75.02
L-GCN (k_at_hop=[200, 10], active_conn=10, step=0.6, maxsz=300) 74.38 83.51 78.68
GCN-D (2 prpsls) 95.41 67.77 79.25
GCN-D (5 prpsls) 94.62 72.59 82.15
GCN-D (8 prpsls) 94.23 79.69 86.35
GCN-D (20 prplss) 94.54 81.62 87.61
GCN-D + GCN-S (2 prpsls) 99.07 67.22 80.1
GCN-D + GCN-S (5 prpsls) 98.84 72.01 83.31
GCN-D + GCN-S (8 prpsls) 97.93 78.98 87.44
GCN-D + GCN-S (20 prpsls) 97.91 80.86 88.57
GCN-V 92.45 82.42 87.14
GCN-V + GCN-E 92.56 83.74 87.93

Note that the prpsls in above table indicate the number of parameters for generating proposals, rather than the actual number of proposals. For example, 2 prpsls generates 34578 proposals and 20 prpsls generates 283552 proposals.

Benchmarks (5.21M)

1, 3, 5, 7, 9 denotes different scales of clustering. Details can be found in Face Clustering Benchmarks.

Pairwise F-score 1 3 5 7 9
CDP (single model, th=0.7) 75.02 70.75 69.51 68.62 68.06
LGCN 78.68 75.83 74.29 73.7 72.99
GCN-D (2 prpsls) 79.25 75.72 73.90 72.62 71.63
GCN-D (5 prpsls) 82.15 77.71 75.5 73.99 72.89
GCN-D (8 prpsls) 86.35 82.41 80.32 78.98 77.87
GCN-D (20 prpsls) 87.61 83.76 81.62 80.33 79.21
GCN-V 87.14 83.49 81.51 79.97 78.77
GCN-V + GCN-E 87.93 84.04 82.1 80.45 79.3
BCubed F-score 1 3 5 7 9
CDP (single model, th=0.7) 78.7 75.82 74.58 73.62 72.92
LGCN 84.37 81.61 80.11 79.33 78.6
GCN-D (2 prpsls) 78.89 76.05 74.65 73.57 72.77
GCN-D (5 prpsls) 82.56 78.33 76.39 75.02 74.04
GCN-D (8 prpsls) 86.73 83.01 81.1 79.84 78.86
GCN-D (20 prpsls) 87.76 83.99 82 80.72 79.71
GCN-V 85.81 82.63 81.05 79.92 79.08
GCN-V + GCN-E 86.09 82.84 81.24 80.09 79.25
NMI 1 3 5 7 9
CDP (single model, th=0.7) 94.69 94.62 94.63 94.62 94.61
LGCN 96.12 95.78 95.63 95.57 95.49
GCN-D (2 prpsls) 94.68 94.66 94.63 94.59 94.55
GCN-D (5 prpsls) 95.64 95.19 95.03 94.91 94.83
GCN-D (8 prpsls) 96.75 96.29 96.08 95.95 95.85
GCN-D (20 prpsls) 97.04 96.55 96.33 96.18 96.07
GCN-V 96.37 96.01 95.83 95.69 95.6
GCN-V + GCN-E 96.41 96.03 95.85 95.71 95.62

Results on YouTube-Faces

Method Pairwise F-score BCubed F-score NMI
Chinese Whispers (k=160, th=0.75, iters=20) 72.9 70.55 93.25
Approx Rank Order (k=200, th=0) 76.45 75.45 94.34
Kmeans (ncluster=1436) 67.86 75.77 93.99
KNN DBSCAN (k=160, th=0., eps=0.3, min=1) 91.35 89.34 97.52
FastHAC (dist=0.72, single) 93.07 87.98 97.19
GCN-D (4 prpsls) 94.44 91.33 97.97

Results on DeepFashion

Method Pairwise F-score BCubed F-score NMI
Chinese Whispers (k=5, th=0.7, iters=20) 31.22 53.25 89.8
Approx Rank Order (k=10, th=0) 25.04 52.77 88.71
Kmeans (ncluster=3991) 32.02 53.3 88.91
KNN DBSCAN (k=4, th=0., eps=0.1, min=2) 25.07 53.23 90.75
FastHAC (dist=0.4, single) 22.54 48.77 90.44
Meanshift (bandwidth=0.5) 31.61 56.73 89.29
Spectral (ncluster=3991, affinity='rbf') 29.6 47.12 86.95
DaskSpectral (ncluster=3991, affinity='rbf') 24.25 44.11 86.21
CDP (single model, k=2, th=0.5, maxsz=200) 28.28 57.83 90.93
L-GCN (k_at_hop=[5, 5], active_conn=5, step=0.5, maxsz=50) 30.7 60.13 90.67
GCN-D (2 prpsls) 29.14 59.09 89.48
GCN-D (8 prpsls) 32.52 57.52 89.54
GCN-D (20 prpsls) 33.25 56.83 89.36
GCN-V 33.59 59.41 90.88
GCN-V + GCN-E 38.47 60.06 90.5

Face Recognition

For training face recognition and feature extraction, you may use any frameworks below, including but not limited to:

https://github.com/yl-1993/hfsoftmax

https://github.com/XiaohangZhan/face_recognition_framework

Citation

Please cite the following paper if you use this repository in your reseach.

@inproceedings{yang2019learning,
  title={Learning to Cluster Faces on an Affinity Graph},
  author={Yang, Lei and Zhan, Xiaohang and Chen, Dapeng and Yan, Junjie and Loy, Chen Change and Lin, Dahua},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2019}
}
@inproceedings{yang2020learning,
  title={Learning to Cluster Faces via Confidence and Connectivity Estimation},
  author={Yang, Lei and Chen, Dapeng and Zhan, Xiaohang and Zhao, Rui and Loy, Chen Change and Lin, Dahua},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2020}
}