• Stars
    star
    1,120
  • Rank 41,504 (Top 0.9 %)
  • Language
    Python
  • License
    MIT License
  • Created over 4 years ago
  • Updated 6 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

PyBullet Gymnasium environments for single and multi-agent reinforcement learning of quadcopter control

gym-pybullet-drones

This is a minimalist refactoring of the original gym-pybullet-drones repository, designed for compatibility with gymnasium, stable-baselines3 2.0, and SITL betaflight/crazyflie-firmware.

NOTE: if you prefer to access the original codebase, presented at IROS in 2021, please git checkout [paper|master] after cloning the repo, and refer to the corresponding README.md's.

formation flight control info

Installation

Tested on Intel x64/Ubuntu 22.04 and Apple Silicon/macOS 13.4.

git clone https://github.com/utiasDSL/gym-pybullet-drones.git
cd gym-pybullet-drones/

conda create -n drones python=3.10
conda activate drones

pip3 install --upgrade pip
pip3 install -e . # if needed, `sudo apt install build-essentials` to install `gcc` and build `pybullet`

Use

PID position control example

cd gym_pybullet_drones/examples/
python3 pid.py

Stable-baselines3 PPO RL example

cd gym_pybullet_drones/examples/
python3 learn.py

Betaflight SITL example (Ubuntu only)

First, check the steps in the docstrings of beta.py, then, in one terminal, run the Betaflight SITL binary

git clone https://github.com/betaflight/betaflight
cd betaflight/ 
make arm_sdk_install # if needed, `apt install curl``
make TARGET=SITL # comment out this line: https://github.com/betaflight/betaflight/blob/master/src/main/main.c#L52
betaflight/obj/main/betaflight_SITL.elf

In another terminal, run the example

conda activate drones
cd gym_pybullet_drones/examples/
python3 beta.py # also check the steps in the file's docstrings

Troubleshooting

  • On Ubuntu, with an NVIDIA card, if you receive a "Failed to create and OpenGL context" message, launch nvidia-settings and under "PRIME Profiles" select "NVIDIA (Performance Mode)", reboot and try again.

Run all tests from the top folder with

pytest tests/

Citation

If you wish, please cite our IROS 2021 paper (and original codebase) as

@INPROCEEDINGS{panerati2021learning,
      title={Learning to Fly---a Gym Environment with PyBullet Physics for Reinforcement Learning of Multi-agent Quadcopter Control}, 
      author={Jacopo Panerati and Hehui Zheng and SiQi Zhou and James Xu and Amanda Prorok and Angela P. Schoellig},
      booktitle={2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
      year={2021},
      volume={},
      number={},
      pages={7512-7519},
      doi={10.1109/IROS51168.2021.9635857}
}

References

TODO

  • Add crazyflie-firmware SITL support @spencerteetaert
  • Add motor delay @JacopoPan / @spencerteetaert
  • Replace rpy with quaternions (and ang_vel with body rates) in obs @JacopoPan
  • Replace BaseSingleAgentAviary and BaseMultiAgentAviary with a single RLAviary, incl. PR #161 @JacopoPan
  • Add a multi-agent MDP with 2-drone chase through a gate @JacopoPan

University of Toronto's Dynamic Systems Lab / Vector Institute / University of Cambridge's Prorok Lab

More Repositories