• Stars
    star
    640
  • Rank 70,324 (Top 2 %)
  • Language
    R
  • License
    Other
  • Created about 9 years ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A dplyr backend that partitions a data frame over multiple processes

multidplyr

Lifecycle: experimental R-CMD-check Codecov test coverage CRAN status

Overview

multidplyr is a backend for dplyr that partitions a data frame across multiple cores. You tell multidplyr how to split the data up with partition() and then the data stays on each node until you explicitly retrieve it with collect(). This minimises the amount of time spent moving data around, and maximises parallel performance. This idea is inspired by partools by Norm Matloff and distributedR by the Vertica Analytics team.

Due to the overhead associated with communicating between the nodes, you won’t see much performance improvement with simple operations on less than ~10 million observations, and you may want to instead try dtplyr, which uses data.table. multidplyr’s strength is found parallelising calls to slower and more complex functions.

(Note that unlike other packages in the tidyverse, multidplyr requires R 3.5 or greater. We hope to relax this requirement in the future.)

Installation

You can install the released version of multidplyr from CRAN with:

install.packages("multidplyr")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("tidyverse/multidplyr")

Usage

To use multidplyr, you first create a cluster of the desired number of workers. Each one of these workers is a separate R process, and the operating system will spread their execution across multiple cores:

library(multidplyr)

cluster <- new_cluster(4)
cluster_library(cluster, "dplyr")
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union

There are two primary ways to use multidplyr. The first, and most efficient, way is to read different files on each worker:

# Create a filename vector containing different values on each worker
cluster_assign_each(cluster, filename = c("a.csv", "b.csv", "c.csv", "d.csv"))

# Use vroom to quickly load the csvs
cluster_send(cluster, my_data <- vroom::vroom(filename))

# Create a party_df using the my_data variable on each worker
my_data <- party_df(cluster, "my_data")

Alternatively, if you already have the data loaded in the main session, you can use partition() to automatically spread it across the workers. Before calling partition(), it’s a good idea to call group_by() to ensure that all of the observations belonging to a group end up on the same worker.

library(nycflights13)

flight_dest <- flights %>% group_by(dest) %>% partition(cluster)
flight_dest
#> Source: party_df [336,776 x 19]
#> Groups: dest
#> Shards: 4 [81,594--86,548 rows]
#> 
#>    year month   day dep_ti… sched_… dep_de… arr_ti… sched_… arr_de… carrier
#>   <int> <int> <int>   <int>   <int>   <dbl>   <int>   <int>   <dbl> <chr>  
#> 1  2013     1     1     544     545      -1    1004    1022     -18 B6     
#> 2  2013     1     1     558     600      -2     923     937     -14 UA     
#> 3  2013     1     1     559     600      -1     854     902      -8 UA     
#> 4  2013     1     1     602     610      -8     812     820      -8 DL     
#> 5  2013     1     1     602     605      -3     821     805      16 MQ     
#> 6  2013     1     1     611     600      11     945     931      14 UA     
#> # … with 336,770 more rows, and 9 more variables: flight <int>, tailnum <chr>,
#> #   origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
#> #   minute <dbl>, time_hour <dttm>

Now you can work with it like a regular data frame, but the computations will be spread across multiple cores. Once you’ve finished computation, use collect() to bring the data back to the host session:

flight_dest %>% 
  summarise(delay = mean(dep_delay, na.rm = TRUE), n = n()) %>% 
  collect()
#> # A tibble: 105 × 3
#>    dest  delay     n
#>    <chr> <dbl> <int>
#>  1 ABQ    13.7   254
#>  2 AUS    13.0  2439
#>  3 BQN    12.4   896
#>  4 BTV    13.6  2589
#>  5 BUF    13.4  4681
#>  6 CLE    13.4  4573
#>  7 CMH    12.2  3524
#>  8 DEN    15.2  7266
#>  9 DSM    26.2   569
#> 10 DTW    11.8  9384
#> # … with 95 more rows

Note that there is some overhead associated with copying data from the worker nodes back to the host node (and vice versa), so you’re best off using multidplyr with more complex operations. See vignette("multidplyr") for more details.

More Repositories

1

ggplot2

An implementation of the Grammar of Graphics in R
R
6,496
star
2

dplyr

dplyr: A grammar of data manipulation
R
4,725
star
3

tidyverse

Easily install and load packages from the tidyverse
R
1,633
star
4

rvest

Simple web scraping for R
R
1,488
star
5

tidyr

Tidy Messy Data
R
1,369
star
6

purrr

A functional programming toolkit for R
R
1,254
star
7

readr

Read flat files (csv, tsv, fwf) into R
R
1,001
star
8

magrittr

Improve the readability of R code with the pipe
R
957
star
9

datascience-box

Data Science Course in a Box
JavaScript
937
star
10

reprex

Render bits of R code for sharing, e.g., on GitHub or StackOverflow.
R
735
star
11

lubridate

Make working with dates in R just that little bit easier
R
727
star
12

readxl

Read excel files (.xls and .xlsx) into R 🖇
C++
726
star
13

glue

Glue strings to data in R. Small, fast, dependency free interpreted string literals.
R
705
star
14

dtplyr

Data table backend for dplyr
R
661
star
15

tibble

A modern re-imagining of the data frame
R
659
star
16

vroom

Fast reading of delimited files
C++
618
star
17

stringr

A fresh approach to string manipulation in R
R
594
star
18

forcats

🐈🐈🐈🐈: tools for working with categorical variables (factors)
R
551
star
19

dbplyr

Database (DBI) backend for dplyr
R
473
star
20

haven

Read SPSS, Stata and SAS files from R
C
423
star
21

modelr

Helper functions for modelling
R
401
star
22

googlesheets4

Google Spreadsheets R API (reboot of the googlesheets package)
R
354
star
23

googledrive

Google Drive R API
R
321
star
24

style

The tidyverse style guide for R code
HTML
291
star
25

duckplyr

A drop-in replacement for dplyr, powered by DuckDB for performance.
R
236
star
26

design

Tidyverse design principles
R
217
star
27

tidyverse.org

Source of tidyverse.org
HTML
191
star
28

hms

A simple class for storing time-of-day values
R
137
star
29

nycflights13

An R data package containing all out-bound flights from NYC in 2013 + useful metdata
R
127
star
30

tidyversedashboard

Tidyverse activity dashboard
R
71
star
31

tidy-dev-day

Tidyverse developer day
R
69
star
32

tidyeval

A guide to tidy evaluation
CSS
55
star
33

dsbox

Companion R package to Data Science Course in a Box
R
49
star
34

tidytemplate

A pkgdown template for core tidyverse packages
SCSS
45
star
35

blob

A simple S3 class for representing BLOBs
R
44
star
36

funs

Collection of low-level functions for working with vctrs
R
34
star
37

code-review

33
star
38

website-analytics

Web analytics for tidyverse + r-lib sites
R
28
star
39

tidyups

21
star
40

ggplot2-docs

ggplot2 documentation. Auto-generated from ggplot2 sources by pkgdown
HTML
10
star